Posts

Hannity on PUMP: A story ‘America needs to know’

Sean Hannity is a big fan of the message contained within the documentary film PUMP, because it’s one he’s been promoting himself for years.

The conservative radio and Fox News host welcomed Fuel Freedom chairman and co-founder Yossie Hollander and board adviser John Hofmeister on “The Sean Hannity Show” on radio Thursday.

Hannity primed the pump for PUMP’s theatrical release Friday with this introduction:

“How many times have I said on this program that oil, energy, is the answer to all of our problems? I’ve said it so often. Well, now there is an eye-opening documentary that I want you to go see. … I have no [rooting] interest in this movie, except that it tells the story that I have been trying to tell you now for such a long period of time about America and how we can become energy independent, about how there’s a lot going on in the oil industry, where we all pay more. How we are all dependent on oil from countries, many of whom just kind of hate our guts. And it’s been put together in a fabulous documentary that is now gonna be released in movie theaters around the country [Friday].

Read more

Japan bets big on hydrogen fuel cells

Remember when Japan’s Ministry of Economy, Trade and Industry (METI) used to sit atop the Japanese industrial complex, steering it like some giant Godzilla hovering over the entire world?

Those were the days when Japan’s government-industry partnership was supposed to represent the future, when Michael Crichton wrote a novel about how Japan would soon devour America, when pundits and scholars were warning that we had better do the same if we hoped to survive – before, that is, the whole thing collapsed and Japan went into a 20-year funk from which it has never really recovered.

Well those days may be returning in one small part as METI prepares to direct at least half the Japanese auto industry into the production of hydrogen-powered fuel-cell cars.

“Japanese Government Bets the Farm on Fuel Cell Vehicles” ran one headline earlier this month and indeed there’s plenty at stake for everyone. The tip-off came at the end of May when Jim Lentz, CEO of Toyota’s North American operations, told Automotive News that electric vehicles are only “short-range vehicles that take you that extra mile…But for long-range travel, we feel there are better alternatives, such as hybrids and plug-in hybrids, and, tomorrow, fuel cells.” The target here, of course, is Tesla, where Elon Musk appears to be making the first inroads against gasoline-powered vehicles with his $35,000 Model E, aimed at the average car buyer. Toyota was originally in on that deal and was scheduled to supply the batteries until it pulled out this spring, ceding the job to Panasonic.

But all that was only a preview of what was to come. In early June, METI announced it would orchestrate a government-private initiative to help Toyota and Honda market fuel-cell vehicles in Japan and then across the globe. Of course that leaves out the other half of Japan’s auto industry, Nissan and Mitsubishi, pursuing their version of the EV, but maybe the Japanese are learning to hedge their bets.

The hydrogen initiative will put the fuel-cell vehicle front-and-center in the race to transition to other forms of propulsion and reduce the world’s dependence on OPEC oil. Actually, hydrogen cars have been in the offering for more than twenty years. In the 1990s soft-energy guru Amory Lovins put forth his Hypercar, a carbon-fiber vehicle powered by hydrogen fuel cells. In 2005, California Gov. Arnold Schwarzenegger inaugurated the “Hydrogen Highway,” a proposed network of hydrogen filling stations that was supposed to blanket the Golden State. Unfortunately, only ten have been built so far, and there are still no more than a handful of FCVs (hydrogen fuel cell vehicles) on the road. Mercedes, BMW, Audi and VW all have small lines but none are marketed very aggressively in the United States.

This time, however, there may be a serious breakthrough. After all, Toyota, Honda and METI are not just in the business of putting out press releases. Toyota will begin production of its first mass-market model in December and Honda will follow with a 5-passenger sedan next year. Prices will start in the stratosphere — close to $100,000 — but both companies are hoping to bring them down to $30,000 by the 2020s. Meanwhile, GM is making noises about a fuel-cell model in 2016 and South Korea’s Hyundai is already unloading its hydrogen-powered Tucson on the docks of California.

What will METI’s role be? The supervising government ministry promises to relax safety standards, allowing on-board storage of hydrogen at 825 atmospheres instead of the current 750. This will increase the car’s range by 20 percent and bring it into the 350-mile territory of the internal combustion engine. Like the ICE, hydrogen cars can “gas up” in minutes, giving them a huge leg up on EVs, which can take anywhere from 20 minutes with superchargers to eight hours with household plugs. METI has also promised to loosen import controls so that foreign manufacturers such as Mercedes-Benz can find their way into Japan. And, of course, it will seek reciprocal agreements so Toyota and Honda can market their models across the globe.

So will the one-two punch of government-and-industry-working-together be able to break the ice for hydrogen vehicles? California seems to be a particularly ripe market. Toyota is already the best-selling car in the state and the California Energy Commission is promising to expand the Hydrogen Highway to 70 stations by 2016. Still, there will be stiff competition from Elon Musk if and when his proposed Gigafactory starts turning out batteries by the millions. Partisans of EVs and fuel-cell vehicles are already taking sides.

In the end, however, the most likely winners will be consumers who will now have a legitimate choice between hydrogen vehicles and EVs. It may be a decade or more before either of these technologies makes a significant dent in our oil consumption, but in the end it will be foreign oil providers that will be feeling the pain.

Can supercapacitors replace batteries?

The electric car depends on batteries, and before EVs become a large chunk of our automotive fleet, there are probably going to be some changes.

Right now, Elon Musk is betting he can produce millions of small lithium-ion batteries not much bigger than the ones you put in your flashlight and string them together to power a $35,000 Tesla Model E over a range of 200 miles at speeds of up to 70-80 mph. The Model E also will also need an infrastructure of roadside “filling stations” and home chargers, although the best superchargers still take more than 20 minutes to achieve 80 percent capacity.

But there is another way to store electricity, long familiar to the designers of electrical circuits. It’s the capacitor, a device that stores a small current by static electricity rather than a chemical reaction. Capacitors sit in all of your electrical devices, from radio circuits to the most sophisticated laptops, and are essential to providing the steady electric current needed to run such electronics. But what if the concept of capacitors could be scaled up to the point where they could help power something as big as an electric vehicle? Granted, it’s a long, long way from the 1.5-volt capacitor in your iPad and powering a 4,500-pound Tesla along the Interstate, but researchers are out there probing and are already thinking in terms of a breakthrough.

Right now there’s a huge separation between the things that batteries can do and the things that capacitors can do. In a way they are complementary — the strengths of one are the weaknesses of the other. But researchers are working toward a convergence — or perhaps just a way of using them in tandem.

A battery employs chemistry by splitting ions in the electrolyte so that the negative ones gather on the cathode and the positive on the anode, building up a voltage potential. When they are connected externally an electric current flows. Batteries have a lot of energy density. They can store electricity up into the megawatt range and release a flow of electricity over long periods of time. The process can also be reversed, but, because the reaction is (once again) chemical, it can take a long time.

Capacitors store electrons as static electricity. A thundercloud is a great big capacitor with zillions of electrons clinging to the almost infinite surface area of individual raindrops. And as everyone knows, this huge stored capacity can be released in a “bolt of lightening.” Capacitors can be recharged almost instantly but also they release their energy almost instantly, rather than the even flow of a battery. One of their major uses is in flash photography. But their capacity for storing power is also limited. On a pound-for-pound basis, the best capacitors can only store one-fifth to one-tenth the equivalent of a chemical battery. On the other hand, batteries can start to wear out after five years, while supercapacitors last at least three times as long.

Back in the 1950s, engineers at General Electric, and later at Standard Oil, invented what have come to be called “supercapacitors.” Basically, a supercapacitor changes the surface material and adds another layer of insulating dielectric in order to increase storage capacity. Surface area is the key and engineers discovered that powdery, activated charcoal vastly increased the capacity of the storage plates. Dielectrics were also reduced to ultra-thin layers of carbon, paper or plastic, since the closer the plates can be brought together, the more intense the charge. Since then they have begun experimenting with graphene and other advanced materials that may be able to increase surface area by orders of magnitude. All of this means that much more electricity can be stored in a much smaller space.

But the problem of low energy density remains. Even supercapacitors can only operate at about 2.5 volts, which means they must be strung together in series in vast numbers in order to reach voltage levels required to power something like an electric car. This creates problems in maintaining voltage balance. Still, some supercapacitors are already being employed in gas-electric hybrids and electric buses in order to store the power siphoned off from braking.

Researchers in the field now see some possibility for convergence. Most exhilarating is the idea that the frame of the car itself could be transformed into a supercapacitor. Last month, researchers from Vanderbilt University published an online paper entitled, “A Multifunctional Load-Bearing Solid-State Supercapacitor,” in which they suggested that load-bearing materials such as the chassis of a car or even the walls of your house could be transformed into supercapacitors to store massive amounts of electricity on-site. Combined with advances in evening the flow of electrons from supercapacitors, this opens up whole new avenues of approach to the electric car.

All of these developments are a long way off, of course. Still, supercapacitors support the possibility of pulling out of your driveway in the morning and returning at night in your EV without needing to gas up with foreign oil at your nearest filling station.

Shakespeare and Julia Child on monopolies, competition and alternative fuels

You must remember the famous community activist who once asked, “To be, or not to be, that is the policy and behavior question; whether ‘tis nobler in the mind to suffer the slings and arrows of outrageously high, constantly shifting gasoline prices or to take arms against a sea of troubles generated by monopolistic fuel markets and open them up and end them.” I’m paraphrasing, of course.

Unfortunately, Shakespeare, now that we need him, is no longer available. But his question, articulated by his political friend Hamlet, still needs to be answered. I suggest we respond to his query in the context of another question: Is competition in the market for vehicular fuel a public good and in the public interest? Ah ha, you ask, why must we ask this question? Don’t we live in a capitalist or quasi-capitalist nation? Gosh, ever since we all were kids, were we not brought up on the wisdom of free markets and their ostensible link to freedom and democracy, a trifecta holy grail?

Sure we were! But the presented wisdom apparently didn’t mean all markets, and most important for this article, the market where most of us purchase fuel. By and large, the market for fuel is limited to a single, generally similar, primary product — gasoline. Competition, when it exists, generates from relatively small price differences, more often than not. Overblown value propositions in advertising concerning engine performance benefits from brand X or Y notwithstanding.

Consumers who, many times, assiduously read the papers or go online to find out where different brands of tires are cheapest or travel miles to visit dealers to get a perceived “good deal” on a car are frequently constrained to their neighborhood gas stations or the stations located near the nearest shopping center or big box store. While price may be a key factor in driving their decision as to which station will fill up their tank, absence of diverse fuel alternatives results in a relatively narrow band of prices per gallon and a competitive floor on consumer savings and costs.

Opening up gas markets will be tough. The oil industry controls or strongly influences over 40 percent of the stations and holds a big, profitable stick concerning what can be sold and how it can be sold at its franchised facilities. Prices are set low enough to scare independents into selecting less-than-favorable locations, or pricey enough to give them some room to keep their own costs relatively high.

To date, state pilot or demonstration programs concerning alternative fuels like ethanol and methanol have had mixed results. Why? Their costs of production and their environmental/GHG costs are lower than gasoline. Are we Americans just dumb? No. Initiatives to date have had to surmount problems including: consumer access to fuel stations with flex-fuel pumps (their costs range from $50,000 to over $100,000); a growing but still relatively small percentage of flex fuel autos compared to the total number of vehicles; the lack of consumer information concerning their own flex-fuel vehicle’s ability to use ethanol; the fear generated by some interest groups often related to the oil industry about the impact of alternative fuels on engines; the seeming ability of the oil industry to manage local prices; and the decisions by supply chain participants, particularly retailers to raise alternative fuel prices to capture immediate profits (reducing their intermediate and long-term ability — as the new kid on the block — to compete with gasoline.)

Evidence from Brazil suggests that demand emanating from an educated public, combined with a commitment to increase the pool of alternative-fuel vehicles and readily accessible fuel stations with ethanol pumps will cause a reduction in gasoline prices. Juliano J. Assunção, Joao Paulo Pessoa and Leonardo Rezende noted in a December 2013 London School of Economics publication, “Our estimates suggest that the model prediction is correct and that as the percentage of flex cars increase by 10%, ethanol and gasoline energy equivalent prices per liter fall by approximately 8 cents and 2 cents, respectively. Considering the volume of sales and size of the flex fuel fleet in 2007, a rough estimate suggests consumer savings to the order of 70 million Reais in the Rio de Janeiro state that year. Our estimates also show that the price gap as well as the price correlation between the two fuels has increased with the increased penetration of flex fuel cars.” Other studies have suggested similar positive impacts.

A U.S. recipe appears clear and consistent with America’s assumed belief in letting the market decide most resource allocation issues connected to the production of non-social welfare related goods and services. Ingredient one: Amend laws and regulations to encourage individual owners to convert older cars to flex-fuel automobiles; ingredient two: mix the resulting converted cars with newer flex-fuel vehicles to create a large flex-fuel pool; ingredient three: liberally sprinkle in enough information to inform consumers and potential-ethanol-supply-chain participants, including potential blenders and retailers, of the potential demand for ethanol as a fuel; ingredient four: add real, solid seasoning to the mix by fostering development, distribution and the sale of natural-gas-based ethanol to achieve significant increased environmental and cost benefits. Julia Child couldn’t build a better dish for the nation as it simultaneously tries to expand the viability of renewable fuels, and Shakespeare’s friend, Hamlet, would not need antidepressants.

DME poses a challenge to CNG

If there’s an Achilles’ heel to the efforts being made to introduce compressed natural gas (CNG) into the country’s vehicles, it is that somebody is going to come along with a liquid fuel that works much better.

CNG has many things going for it. Natural gas is now abundant and promises to stay that way for a long time. That puts the price around $2 a gallon, which is a big savings when gas costs $3.50 and diesel costs $3.70 per gallon. Trucks — mid-sized delivery trucks and big 18-wheelers — are the target market. Delivery vans usually operate out of fleet centers where a central compressor can be installed to service many vehicles. Meanwhile, pioneering companies such as Clean Energy Fuels are busy building an infrastructure at truck stops along the Interstate Highway System to service long-hauling tractor-trailers on their cross-country routes.

But there is a weakness. As a gas, CNG requires a whole new infrastructure. Compression tanks must be built at gas stations, much stronger than ordinary gas tanks and tightly machined, so gas does not escape. Even under compression, CNG has a much lower energy density than gasoline. This requires special $6,000 tanks that must still take up more space. In passenger vehicles they will devour almost all the trunk space, which is why vendors are concentrating on long-distance tractor-trailers.

As a result, there always seems the chance that some liquid derivative of methane is going to come along and push CNG off the market. Methanol has been a prime candidate since it is already manufactured in commercial quantities for industrial purposes. M85, a mixture of 85 percent methanol and 15 percent gasoline, is legal in the United States, but has not been widely adopted.

Now a new candidate has emerged in the long-distance truck competition — dimethyl ether or “DME.” Two methane ions joined by a single oxygen molecule, DME is manufactured from natural gas and has many of the same properties as methanol. It is still a gas at room temperature but can be stored as a liquid at four atmospheres or -11o F. It can also be dissolved as a gasoline or propane additive at a 30-70 percent ratio. In 2009 a team of university students from Denmark won the Shell Eco Marathon with a vehicle running on 100 percent DME.

So is it practical? Well, we’ll soon find out. Volvo has just announced it will release a version of its D13 truck in 2014 that runs on DME. At the same time, Volvo pushed back the launch of its natural gas version of the same line, meaning it may be changing its mind about which way the technology is going to go. In case you haven’t been keeping abreast, Volvo is now the largest manufacturer of heavy trucks in the world, having acquired Mack, America’s oldest truck company, in 2000.

So does that mean that CNG may turn out to be a dead end and Clean Energy Fuels is going to get stuck with a lot of unused compressor pumps? Well, hold on a minute. Technology does not stand still.

Last week at the Alternative Clean Transportation Expo in Long Beach, Calif., Ford and BASF unveiled a new device for the Ford F-450 CNG fuel tank. It’s called a Metal Organic Framework (MOF), a complex of clustered metal ions built on a backbone of] rigid organic molecules that form one-, two-, or three-dimensional structures. Lots of surface area is created, making MOFs porous enough to hold large amounts of gaseous material such as methane.

MOFs create the possibility that on-board CNG tanks will not have to operate under extremely high pressure or extremely low temperatures. Like a metallic sponge the high-surface material soaks gas right up, where it can be easily dislodged as well. According to BASF and Ford, the same amount of natural gas that requires 3,600 pounds per square inch (PSI) can be stored in an MOF tank at close to 1,000 PSI. That makes a big difference when it comes to designing an automobile.

So does that mean natural gas is going to be able to hold its own against DME and other liquid competitors? Well, wait a minute, there’s still more. Not only is MOF technology good at storing methane, it also works with hydrogen! That means the hydrogen-fuel cell — still the favorite among Japanese manufacturers — may be able to work its way back in the game as well.

In fact, Ford isn’t playing any favorites. Equipped with its new MOF tanks, the F-450 will offer drivers a choice of seven — that’s right, seven — different fuel options using the same internal combustion engine. “Ford has no idea which of these fuels will make the most sense,” Ford’s Jon Coleman told Jason Hall of Motley Fool. “So we need to build vehicles that have the broadest capability and the broadest fuel types so our customers can choose for themselves.”

That’s the name of the game. It’s called Fuel Freedom.

Star light, star bright: Wishing for a cleaner, less-expensive fuel

Star light, star bright, I wish I may, I wish I might, have this wish I wish tonight… How many of you said these words on a starry night, particularly if you were with your best girl or boyfriend as a teenager? Or, as a loving parent, how many of you taught your child to say these words as part of your effort to build his or her vocabulary or memory…or just to instill their capacity to dream?

Now Kate Gordon, the, legitimately well respected, president of Next Generation, seems to have forgotten the difference between wishing, hoping, dreaming and reality. Her recent brief “expert” article in the Wall Street Journal departs from reasonable projection into fanciful wishes.

Gordon is correct that the “average car” on the U.S. road is about 11 years old and that their negative impact on GHG emissions and our health is significant. She is also correct in pointing to the large impact that high gas prices have on “our wallets,” (I would add) particularly for low and moderate-income households. Clearly, for the poor and near-poor families and for the economically fragile moderate-income households, present gas prices mean less of the basic necessities: modest job choices, good food, housing and healthcare.

Where Gordon and I part company is with her suggestion that an auto replacement initiative or what she calls an Enhanced Fleet Modernization programs would generate a visible, short-term impact and would likely be supported now, by assumedly the federal or state governments, in a significant way. (I should indicate that while I was head of the urban policy in the Carter administration, HUD senior officials thought about offering support by providing older cars to carless, low-income folks to permit them to secure job opportunities in the suburbs. How times have changed. The concern about GHG emissions and other pollutants emitted from older cars that run on gasoline are now seen as a real environmental problem.) The difficulty with Ms. Gordon’s proposal is number one, money and bureaucracy; number two, money and bureaucracy; and number three, money and bureaucracy. Even California, which she touts, has had mixed results with its replacement and incentives to replace older car programs. Clearly, exporting California’s experience to many other states, given economic and political constraints, would be difficult and would likely result annually in a relatively small impact on the nearly 300,000,000 cars in the U.S of which approximately 85-90 percent are over six years old.

Car replacement is a nice thought, but probably, at this time, an exotic one. If policymakers are seriously looking for a way for large numbers of owners of older cars to immediately reduce their vehicle’s negative effect on the environment, air quality and their own costs of fuel, there are better ways. While we wait and hope for the advent of vehicles that are ready to run on renewable fuels and that simultaneously meet the travel as well as budget needs and demands of most low, moderate and middle-income Americans, we should look at natural-gas-based ethanol as a fuel for newer flex fuel cars and for large numbers of older vehicles converted to flex-fuel vehicles.

Ethanol is not perfect as a fuel but it is better than gasoline. It emits fewer GHG emissions and other pollutants harmful to the nation’s quality of life. Recent regulations, like ones initiated by Colorado, that significantly reduce emissions from drilling now will likely make life cycle environmental evaluations of natural gas changed into ethanol a much better environmental deal. The process appears technologically feasible at a cost lower than the production costs of gasoline. If ethanol is allowed to compete with gasoline by oil companies on an even playing field — oil companies generally control who gets what and where at most “gas” stations — ethanol will be cheaper than gasoline for the consumer.

It is relatively inexpensive to convert older cars to flex-fuel vehicles — perhaps as little as $100 to $200. Finding a way through lessening the cost of certification to expand the number of conversion kits certified by the EPA and, or, where relevant, allowing recalibration of software and engines, would expand the benefit-cost ratio for many older cars. Star light, star bright, we can have the wish we wish tonight concerning a cleaner environment and lower consumer prices in a relatively short time, while we continue to push for electric vehicles and a whole range of renewable fuels to achieve prime-time performance for most Americans.