Posts

10 people who turned anger into solutions for high gas prices

So we’ve heard from Americans who say high gas prices have disrupted their lives and their work. Let’s shift to the people who are more than mad as hell. They’re mad enough to turn their energy into action.

Among these 10 ideas, what’s the most practical for your life?

 

“I just ditched my old 1998 Volvo S70 for a used Prius, and it is so much more fun to fill a 10-gallon tank than an 18-gallon one. And have it last more than a week of heavy Los Angeles commuting. It’s still new to me, so I still kind of giggle every time I fill up the tank. I’m thrilled to put the money I save toward better things.”
— Jennifer

“We save a lot of money in the summer because my wife takes the bus to the south side of Madison to go to work, and I pick her up in the afternoon, about 4 miles south of our home. If I was to take her to work and pick her up, it would be 48 miles round-trip, morning and afternoon. The bus is cheaper.”
— Laverne F., Madison, Wisconsin

“As gasoline was so high for so long, I made a bio-diesel processor from a old electric water heater and made my own fuel for the oil furnace and my old 1984 GMC van with a diesel engine. I still received 21 mpg. Begging for grease was the hard part.”
— Willis W.

“I wish I had a good story for you, but my wife and I drive a plug-in Chevy Volt. We hardly ever stop at a gas station, except perhaps once every 6 weeks or while on an occasional trip. When we top the tank, it seldom takes more than 5 1/2 gallons, i.e. less than $20 worth of premium fuel. The main reason that we stop at gas stations these days is to get an automatic car wash.”
— David and Barbara G., Gaithersburg, Maryland

“Still wondering how to convert my 99 Ford Expedition to NG?”
— Gary S., Laguna Woods, California

(We’re checking around to find a SoCal CNG conversion business. Will update later.)

“I have not visited a gas station since September 2014, when I took delivery of my Tesla. However, I still pay for my daughter’s gasoline, suffer the financial cost, and contribute to the oil industry’s wanton environmental degradation. Savings at the pump could help me fund her college education.”
— Dr. George

“Go electric. I did and am receiving my Tesla next week. No more gas at all.”
— Bob

“Today we bought a 2014 Ford Focus, a flex-fuel vehicle which enables us to use E85 for fuel. A small contribution to energy independence.”
— David

“We need a blender pump [for ethanol] in every station.”
— Melvin M.

“I top off my cars with E85 when I can. I fill up once a month with a discount at Kroger. I am really pushing to get Kroger to provide ETHANOL pumps and shop at the same place!”
— Gerard R., Stone Mountain, Georgia

 

Incidentally, here’s a handy guide to flex-fuel vehicles on the market.

The Price of Hybrid and Electric Cars Is Plummeting. Here’s Why

USA Today just reported that Ford is cutting the sticker price of the fully battery-powered plug-in Focus Electric by a flat $6,000. That’s on top of a $4,000 price reduction on the same vehicle a year ago. The new sticker price is $29,995 including shipping—but not including federal tax credits of up to $7,500 and state incentives that might effectively knock another $2,500 off the amount buyers pay.

Read more in TIME.

Natural gas vehicles take the halfway route

In the early 1990s, California tried to force the introduction of electric cars by requiring that auto companies produce a zero-emissions vehicle in order to remain in the state. The result was Chevrolet’s EV1, which everyone agreed was the best electrical vehicle that could be built at the time. Owners loved them, but somehow the effort didn’t take off.

The infrastructure simply wasn’t in place. The car only had a 70-mile range and drivers spent much of their time worrying about their next charge. Many EV1s ended up on the lots of rental agencies where they attracted little attention. All this, of course, was interpreted by some people as the fault of the oil companies and the auto industry, which didn’t push the case hard enough. The award-winning documentary “Who Killed the Electric Car?” made this argument.

Then three years later, Toyota introduced the Prius, a gas-electric hybrid that gave drivers some breathing room. It was a spectacular success. By not trying to make the technological transition in one giant leap, the Prius introduced drivers to the advantages of electric propulsion without asking them to sacrifice anything in terms of a nerve-wracking search for a refill. In fact, when Toyota brought out the Prius it deliberately left off a home charger so that buyers would not associate it with the failed EV1. Not until several years later did the company release a plug-in hybrid. In both cases, the Prius has been the most successful of all hybrids.

Natural gas vehicles seem determined to avoid the same mistake. This year both Ford and General Motors are releasing commercial NGVs in their light-truck and sedan lines. But they are taking care to make them bi-fuel vehicles that run on both gasoline and natural gas, although they are expensive. (Both companies have been making tri-fuel — gasoline, ethanol and CNG — for many years in Brazil.) 

First out of the box will be the immensely popular Chevrolet Silverado and the GMC Sierra, both full-sized pickups that sold 480,000 and 184,000 last year, respectively, the highest sales mark since 2007. GM is offering bi-fuel versions for every cabin configuration. The 2015 model will offer a 16-gallon gasoline tank and a 17-gallon-equivalent compressed natural gas tank. When both are filled, the truck will have a remarkable range of 650 miles.

Along with that, GM will be releasing a bi-fuel Chevrolet Impala to introduce ordinary drivers to the advantages of natural gas. The Impala will feature an 18.5-gallon gasoline tank and a 7.7-GGE CNG tank. The result will be a 500-mile range.

Not to be outdone, Ford has already introduced a bi-fuel version of the immensely successful F-150 half-ton pickup truck. Released only last November, the company managed to sell 15,000 vehicles across eight models in 2013. That beat 2012 sales by 25 percent. When combined with its conventional gas tank, the CNG boost gives the F-150 an astounding 700-mile range, beating the Silverado by 100 miles. Unfortunately, the price differential for all these NGV models will be about $10,000.

But motorists could see a 2-3-year payback if the price gap between gasoline and its natural gas equivalent holds up. Right now it has settled around $1.50 gap per gallon and has remained there for almost five years. Give motorists the opportunity to save almost half the price on a gallon of gas is bound to make the new bi-fuel models more attractive.

Other developments are also moving in the direction of a transition to natural gas for high mileage vehicles. In 2012, ARPA-E, the federal government’s program for advanced energy research, awarded $2.3 million to GE Global Research, Chart Industries and the University of Missouri to design a gas refueling station for homeowners. GE already makes a $5,000 medium-sized refueling kit for commercial businesses called “CNG in a Box” that takes gas out of the utility pipes and compresses it for fleet vehicles. The target price for the scaled-down homeowner version is $500. The consortium has set a release date for later this year, at which point we’ll find out if they’ve been successful. The launching of such a cheap conversion system that would allow homeowners to tap the natural gas pipes in their house to refuel their cars would revolutionize the whole NGV effort.

Of course there’s always another possibility — converting our abundant natural gas supplies to ethanol or methanol that would fit right into our current gasoline delivery system. Switching to liquids would not require a new on-board gas tank but would simply involve adjusting existing engines so they could run on a variety of liquids — the “flex-fuel” system. Giving motorists the widest variety of choices would let them experiment with different strategies without having to make a giant leap over some technological chasm. That’s what California learned twenty years ago when it tried to rush the introduction of the electric car and the lesson still holds good today.

Toyota Embraces Hydrogen

Toyota is the world’s most successful car company. The Prius is the most popular gas-electric hybrid ever, with 3 million sold in 80 countries worldwide. Toyota can be said to have pioneered the first vehicle that has challenged the traditional internal combustion engine.
So why is the Japanese giant now moving away from hybrids and placing its bets on the hydrogen fuel cell?
It’s a tough question. Not many analysts can see the sense of it. Elon Musk dismisses the whole idea as “fool cells” and says it can’t succeed. Yet, Toyota maintains that there are inherent advantages in the technology that will eventually emerge. Most of all, the decision by Toyota, Honda and Hyundai to go with hydrogen instead of electric vehicles has set off a fierce debate on which technology — if either — represents the better route to replacing the internal combustion engine.
It is not as if this is a snap decision for Toyota. In 1992, the company set up two task forces — one to investigate the gas-electric hybrid and one to pursue the hydrogen vehicle. In 1997 the Japanese giant introduced the Prius, which has gone on to become one of the most successful models of all time. But work never stopped on the fuel cell project. Now, as company officials reportedly believe hybrid technology may have reached the point of diminishing returns, they feel it is time to move on to something new. “Of all the advanced power train systems we have in our portfolio,” Toyota Senior Vice President Bob Carter told Green Car Reports, “we see hydrogen fuel cells as being the no-compromise, primary-option vehicle for the next 100 years.”
All this is happening, of course, at the moment when Tesla seems to be proving that electric vehicles can go head-to-head with gas-powered cars. So the question is, what does Toyota see in hydrogen that can’t be achieved by following up with electrics?
Range is one answer. Toyota is still convinced that electric vehicles will never get beyond the 150-200-mile range that most EVs now achieve — although Tesla is already pushing toward 300. The new Toyota Fuel Cell Vehicle (FCV) that will go on sale in California next summer will have a range of 300 miles, with hopes of future improvement.
Even more important than range is refueling time. A fuel-cell vehicle can fill up at a hydrogen pump in ten minutes — still significantly longer than gasoline — but an EV takes from four to six hours. Even the new “superchargers” that Musk is installing around the country take 20 minutes to give a half-charge. But Musk is also working on a battery-pack replacement that would be faster than a gasoline fill-up.
Of course all this is predicated on having “filling stations” available, and on that score, hydrogen is even further behind. There are only 60 such facilities in the entire country. Tesla just announced its 100th supercharging station in April and that’s just a small part of the action. Most EV owners recharge at home and the electric grid is everywhere. Providing hydrogen around the country would require a whole new infrastructure.
Joseph Romm, who once promoted hydrogen cars as Assistant Secretary of Energy under Bill Clinton and later wrote the book, “The Hype About Hydrogen,” remains one of the fiercest critics of the technology. “Hydrogen is the smallest molecule and escapes almost any container,” he wrote in his blog, ThinkProgress. “It makes metals brittle. It is almost impossible to transport. These are physical barriers that will be very difficult to overcome.”
Another surprising aspect of hydrogen is that it is not particularly cheap. Unlike EVs, ethanol or methanol made from natural gas, hydrogen does not offer consumers any financial incentive. At the J.P. Morgan Auto Conference in New York last week, Senior Vice President Carter admitted that a full tank of hydrogen needed to carry the driver 300 miles will cost $50, slightly higher than ordinary gasoline. By contrast, the owner of a Prius only pays $21 for the same trip, and the owner of a Tesla Model S would pay $9.60 at off-peak rates. It’s hard to see how there is going to be any appeal to consumers.
Now it must be admitted that much of the fierce debate taking place on the Internet concerning fuel cells vs. EVs revolves around reducing carbon emissions rather than freeing ourselves from foreign oil. EV advocates imagine a grid running on wind and solar energy while H2 partisans envision windmills and solar collectors turning out prodigious amounts of hydrogen. Other environmental critics have argued that without a larger component of non-fossil-fuel sources generating the electricity, converting to electric vehicles will do nothing to reduce carbon emissions, although some people disagree with all this.
It sometimes seems as if we are trying to accomplish too many things at once. Putting more FCVs and EVs on the road would definitely move us toward energy independence. The source of the hydrogen or electricity can be sorted out later, and the same goes for methanol and ethanol as a liquid substitute for gasoline. These fuels might originally come from natural gas, but renewable sources such as landfill gas and manure piles could be substituted later.
The important thing is to keep moving forward on all fronts. No one knows when some vast new battery improvement or an entirely different method of extracting hydrogen may prove to be a game-changer. Toyota is doing this by pursuing the fuel cell vehicle — even though for the present the odds seem slightly stacked against it.

 
“Toyota FCV-R Concept WAS 2012 0629″ by Mariordo – Mario Roberto Durán Ortiz – Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons.

Garage filling stations — are we getting close?

One of the greatest appeals of switching to an alternative-fuel vehicle — electric, compressed natural gas or hydrogen — is saving money and freeing yourself from the clutches of foreign oil. But another is being able to supply your own fuel from a garage filling station where you may even be able to generate some of it yourself.

All this takes on a certain air of necessity when you realize that most of the infrastructure for recharging or refilling is not yet in place. In many cases, the garage may be the best option right now. So let’s run down some of the different options available and see how they stack up as being economical and practical.

Let’s start with the easiest one — electric cars. There are three types of chargers available to owners of a Prius, Leaf or Chevy Volt. The first is a Level 1 “trickle” charger, which is just a basic 120-volt line that plugs into any three-pronged outlet. This is the standard plug-in for all EVs. The problem is the amount of time it takes for a complete charge. For the Leaf, it takes close to 21 hours, which means that you can’t even do it overnight. For hybrids there’s some leeway since you can always revert to the gas motor and do some brake recharging as well. But if you’re planning to rely completely on a home outlet, you’d better have a second car.

More favorable is a Level 2 240-volt circuit. If you have an electric clothes dryer in your house, you’re already equipped. If you don’t have a 240-volt system at home, installation is easy enough. It will require a 40-amp circuit breaker, which may need a permit from the local building department, but the job is simple enough. Recharging time will be cut to less than eight hours, enough for an overnight. Plugincars.com puts the price at $600 -$700, although vendors such as ClipperCreek lists some for less.

If you really want to go really high-tech, you can move up to a Level 3 480-volt power supply that can give you an 80 percent charge in half an hour. The whole package costs $30,000, but with federal tax breaks and some help from the car companies, you can get it down to $10,000. Nissan offers a unit for $9,900. You could probably recoup some of the costs by recharging EVs for your neighbors, but you might need a zoning variance.

So how about compressed natural gas? What are the options there?

The Honda Civic is the only CNG passenger vehicle being sold in the United States. (Most of the progress has been with delivery trucks and long-haul trailers.) There are currently 1,000 CNG filling stations across the country, but half of them belong to companies that are using them for their fleets. Only about 500 are available to the public. So, unless you’re traveling along an Interstate and can make it to one of Clean Energy Fuels’ new truck stops, you’re going to have a hard time.

Refilling at home, however, isn’t all that impractical. More than half the residences in the country are equipped with natural gas for home heating, cooking or hot water. The trick is to get a device that can compress this household gas to be used in your car.

Honda originally offered a home refueling kit, the Phill, which costs $4,500 and could do a refill overnight. Honda stopped making the offer after 2012; however, due to concerns about the widely varying quality of non-commercial gas and the possibility of home devices allowing moisture to collect in the fuel system. For those willing to take the chance, the Phill is still available from its manufacturer, BRC FuelMaker. The question is, “Why is it so expensive when the same pump would cost 10% if it filled air bottles?” There is a regulatory review needed to reduce the cost.

Seeking to promote the technology, the Department of Energy (DoE) handed out grants a few years ago to encourage companies to develop affordable home systems. Now one of them may have come through. The Eaton Corporation of Cleveland, already prominent in the field of electrical charging stations, announced in 2012 that it plans to market a CNG home refueling device by 2015. “The system will use liquid to act as a piston in compressing the gas,” says Chris Roche, vice president at Eaton’s Innovation Center. “We have also developed an innovative heat exchange technology that will improve efficiency and cut costs dramatically.” Eaton is aiming at production costs of $500, which means the device could sell for less than $1,000. GoNatural, a Salt Lake City company, has also promised to have a product available by 2015. “It could be a game changer,” said New York Times reporter Paul Stenquist, in profiling CNG home compressors last October.

So, what about hydrogen? Is there anything available there? Hydrogen is very difficult to deal with. It is the smallest atom and will leak through just about anything. It’s hard to store and transport and must be kept under high pressure.

The upside, however, is the possibility of generating your own hydrogen, particularly from renewable resources. This can be done with simple electrolysis of water, which only requires an electric current. If you can generate that current with wind or solar energy, then you are essentially powering your car for free.

Making it happen is probably a long way off, although people are working on it. HyperSolar, Inc., a Santa Barbara company, has announced “proof of concept” of a method for generating solar hydrogen. “Using our self-contained particle in a low cost plastic bag, we have successfully demonstrated our ability to mimic photosynthesis to produce renewable hydrogen from virtually any source of water using the power of the Sun,” said CEO Tim Young while making the announcement. Horizon Fuel Cells, a Singapore company, released a “desktop” hydrogen generator in 2010 that generates hydrogen through electrolysis from any power source. It sells for $250 on Amazon. Although the company is targeting much smaller fuel-cell devices, it could eventually scale up to handle quantities needed to run a hydrogen fuel cell car

Altogether for cutting loose from the local gas station, electric vehicles are the best bet for now. But natural gas in its many forms — including methanol — are moving up and renewable hydrogen may be on the horizon. With home-generating devices proliferating, it is not hard to see all this eventually making a dent in our consumption of fossil fuels.

From lab to market, it’s a long haul

The Energy Information Administration has done us an enormous favor by producing a simple chart to make sense of where the development of energy storage technology is going. Energy storage, as the EIA defines it, includes heat storage, and a quick look at the chart reveals that those forms that involve sheer physical mechanisms – pumped storage, compressed air and heat reservoirs – are much further along than chemical means of storage, particularly batteries.

The EIA divides the development of technologies into three phases – “research and development,” “demonstration and deployment” and “commercialization.” It also ranks them according to a factor that might be called “chances for success,” which is calculated by a multiple of capital requirements times “technological risk.”

As it turns out, only two technologies that could contribute to transportation are in the deployment stage while three more are in early development. The two frontrunners are sodium-sulfur and lithium-based batteries while the three in early stages are flow batteries, supercapacitors and hydrogen. The EIA refers to hydrogen as one of the ways of storing other forms of energy generation, particularly wind and solar. But hydrogen is also being deployed in hydrogen in hydrogen-fuel-cell vehicles that have already been commercialized.

Other than building huge pumped-storage reservoirs or storing compressed air in underground caverns, the chemistry of batteries is the most attractive means of storing electricity, which is the most useful form of energy. Batteries have always had three basic components, the anode, which stores the positive charge, the cathode, which stores the negative charge, and the electrolyte, which carries the charge between them. Alexander Volta designed the first “Voltaic pile” in 1800 by submerging zinc and silver in brine. Since then, battery improvements have involved finding better materials for all three components.

Lead-acid batteries have become the elements of choice in conventional batteries because the elements are cheap and plentiful. But lead is one of the heaviest common elements and becomes impractical when it comes to loading them aboard a vehicle.

The great advantage of lithium-ion batteries has been their light weight. The lithium substitutes for metal in both anode and cathode, mixing with carbon and iron phosphate to create the two charges. Li-ion, of course, is the basis of nearly all consumer electronics and has proved light and powerful enough to power golf carts. The question being posed by Elon Musk is whether they can be ramped up to power a Tesla Model S that can do zero-to-60 with a range of 300 miles.

Tesla is not planning any technological breakthrough, but will use brute force to try to scale up. Enlarging li-ion batteries tends to shorten their life so the Tesla will pack together thousands of small ones no bigger than a AA that will be linked by a management system that coordinates their charge and discharge. Musk is betting that economies of scale at his “Gigafactory” will lower costs so that the Model X can sell for $35,000. According to current plants, the Gigafactory will be producing more lithium-ion batteries than are now produced in the entire world.

In the sodium-sulfur battery, molten sodium serves as the anode while liquid sodium serves as the cathode. An aluminum membrane serves as the electrolyte. This creates a very high energy density and high discharge rate of about 90 percent. The problem is that the battery must be kept at a very high temperature, around 300 degrees Celsius, in order to liquefy its contents. A sodium-sulfur battery was tried in the Ford “Ecostar” demonstration vehicle as far back as 1991, but it proved too difficult to maintain the temperature.

Flow batteries represent a new approach where both the anode and cathode are liquids instead of solids. Recharging takes place by replacing the electrolyte. In this way, flow batteries are often compared to fuel cells, where a steady flow of hydrogen or methane is used to generate a current. The great advantage of flow batteries is that they can be recharged quickly by replacing the electrolyte, rather than taking up to 10 hours to recharge, as with, say, the Chevy Volt. So far flow batteries have relatively low energy density, however, and their use may be limited to stationary sources. A German-made vanadium-flow battery called CellCube was just installed by Con Edison as a grid-enhancement feature in New York City this month.

Supercapacitors use various materials to expand on the storage capacity devices in ordinary electric circuits. They have much shorter charge-and-discharge cycles but only achieve one-tenth of the energy density of conventional batteries. As a result, they cannot yet power vehicles on a stand-alone basis. However, supercapacitors are being used to capture braking energy in electric trams in Europe, in forklifts and hybrid automobiles. The Mazda6 has a supercapacitor that uses braking energy to reduce fuel consumption by 10 percent.

The concept of “storage” can be also be expanded to include hydrogen, since free hydrogen is not a naturally occurring element but can store energy from other sources such as wind and solar. That has always been the dream of renewable energy enthusiasts. The Japanese and Europeans are actually betting that hydrogen will prove to be a better alternative than the electric car. Despite the success of the Prius hybrid, Toyota, Honda and Hyundai (which is Korean) are putting more emphasis on their fuel cell models.

Finally, methanol can be regarded as an “energy storage” mechanism, since it too is not a naturally occurring resource but is a way to transmit the potential of our vast reserves of natural gas. Methanol proved itself as a gasoline substitute in an extensive experiment in California in the 1990s and currently powers a million cars in China. But it has not yet achieved the recognition of EVs and hydrogen – or even compressed natural gas – and still faces regulatory hurdles.

All these technologies offer the potential of severely reducing our dependence on foreign oil. All are making technical advances and all have promise. Let the competition begin.