Posts

Garage filling stations — are we getting close?

One of the greatest appeals of switching to an alternative-fuel vehicle — electric, compressed natural gas or hydrogen — is saving money and freeing yourself from the clutches of foreign oil. But another is being able to supply your own fuel from a garage filling station where you may even be able to generate some of it yourself.

All this takes on a certain air of necessity when you realize that most of the infrastructure for recharging or refilling is not yet in place. In many cases, the garage may be the best option right now. So let’s run down some of the different options available and see how they stack up as being economical and practical.

Let’s start with the easiest one — electric cars. There are three types of chargers available to owners of a Prius, Leaf or Chevy Volt. The first is a Level 1 “trickle” charger, which is just a basic 120-volt line that plugs into any three-pronged outlet. This is the standard plug-in for all EVs. The problem is the amount of time it takes for a complete charge. For the Leaf, it takes close to 21 hours, which means that you can’t even do it overnight. For hybrids there’s some leeway since you can always revert to the gas motor and do some brake recharging as well. But if you’re planning to rely completely on a home outlet, you’d better have a second car.

More favorable is a Level 2 240-volt circuit. If you have an electric clothes dryer in your house, you’re already equipped. If you don’t have a 240-volt system at home, installation is easy enough. It will require a 40-amp circuit breaker, which may need a permit from the local building department, but the job is simple enough. Recharging time will be cut to less than eight hours, enough for an overnight. Plugincars.com puts the price at $600 -$700, although vendors such as ClipperCreek lists some for less.

If you really want to go really high-tech, you can move up to a Level 3 480-volt power supply that can give you an 80 percent charge in half an hour. The whole package costs $30,000, but with federal tax breaks and some help from the car companies, you can get it down to $10,000. Nissan offers a unit for $9,900. You could probably recoup some of the costs by recharging EVs for your neighbors, but you might need a zoning variance.

So how about compressed natural gas? What are the options there?

The Honda Civic is the only CNG passenger vehicle being sold in the United States. (Most of the progress has been with delivery trucks and long-haul trailers.) There are currently 1,000 CNG filling stations across the country, but half of them belong to companies that are using them for their fleets. Only about 500 are available to the public. So, unless you’re traveling along an Interstate and can make it to one of Clean Energy Fuels’ new truck stops, you’re going to have a hard time.

Refilling at home, however, isn’t all that impractical. More than half the residences in the country are equipped with natural gas for home heating, cooking or hot water. The trick is to get a device that can compress this household gas to be used in your car.

Honda originally offered a home refueling kit, the Phill, which costs $4,500 and could do a refill overnight. Honda stopped making the offer after 2012; however, due to concerns about the widely varying quality of non-commercial gas and the possibility of home devices allowing moisture to collect in the fuel system. For those willing to take the chance, the Phill is still available from its manufacturer, BRC FuelMaker. The question is, “Why is it so expensive when the same pump would cost 10% if it filled air bottles?” There is a regulatory review needed to reduce the cost.

Seeking to promote the technology, the Department of Energy (DoE) handed out grants a few years ago to encourage companies to develop affordable home systems. Now one of them may have come through. The Eaton Corporation of Cleveland, already prominent in the field of electrical charging stations, announced in 2012 that it plans to market a CNG home refueling device by 2015. “The system will use liquid to act as a piston in compressing the gas,” says Chris Roche, vice president at Eaton’s Innovation Center. “We have also developed an innovative heat exchange technology that will improve efficiency and cut costs dramatically.” Eaton is aiming at production costs of $500, which means the device could sell for less than $1,000. GoNatural, a Salt Lake City company, has also promised to have a product available by 2015. “It could be a game changer,” said New York Times reporter Paul Stenquist, in profiling CNG home compressors last October.

So, what about hydrogen? Is there anything available there? Hydrogen is very difficult to deal with. It is the smallest atom and will leak through just about anything. It’s hard to store and transport and must be kept under high pressure.

The upside, however, is the possibility of generating your own hydrogen, particularly from renewable resources. This can be done with simple electrolysis of water, which only requires an electric current. If you can generate that current with wind or solar energy, then you are essentially powering your car for free.

Making it happen is probably a long way off, although people are working on it. HyperSolar, Inc., a Santa Barbara company, has announced “proof of concept” of a method for generating solar hydrogen. “Using our self-contained particle in a low cost plastic bag, we have successfully demonstrated our ability to mimic photosynthesis to produce renewable hydrogen from virtually any source of water using the power of the Sun,” said CEO Tim Young while making the announcement. Horizon Fuel Cells, a Singapore company, released a “desktop” hydrogen generator in 2010 that generates hydrogen through electrolysis from any power source. It sells for $250 on Amazon. Although the company is targeting much smaller fuel-cell devices, it could eventually scale up to handle quantities needed to run a hydrogen fuel cell car

Altogether for cutting loose from the local gas station, electric vehicles are the best bet for now. But natural gas in its many forms — including methanol — are moving up and renewable hydrogen may be on the horizon. With home-generating devices proliferating, it is not hard to see all this eventually making a dent in our consumption of fossil fuels.

Is Elon Musk the next Henry Ford?

Elon Musk doesn’t mind making comparisons between himself and Henry Ford. Others are doing it as well.

In announcing his plans for a “Gigafactory” to manufacture batteries for a fleet of 500,000 Teslas, Musk said it would be like Ford opening his famous River Rouge plant, the move that signaled the birth of mass production.

The founder of PayPal and current titular leader of Silicon Valley (now that Steve Jobs is gone), Musk is not one for small measures. The factory he is now dangling before four western states would produce more lithium-ion batteries than are now being produced in the entire world. And that’s not all. He’s designing his new operation to mesh with another cutting-edge, non-fossil-fuel energy technology – solar storage. His partner will be SolarCity (where Musk sits on the board), run by his cousin Lyndon Rive. Together they are looking beyond mere automobile propulsion and are envisioning a world where all this solar and wind energy stuff comes true.

So, is Musk a modern-day Prometheus, bringing the fire to propel an entirely new transportation system? Or, as many critics charge, is he just conning investors onto a leaky vessel that is eventually going to crash upon the shores of reality? As the saying goes, we report, you decide.

One investor that is already showing some qualms is Panasonic, which already supplies Tesla with all its batteries and would presumably help the company fill the gap between the $2 billion it just raised from a convertible-bond offering and the $5 billion needed to build the plant. “Our approach is to make investments step by step,” Panasonic President Kazuhiro Tsuga told reporters at a briefing in Tokyo last week. “Elon plans to produce more affordable models besides [the] Model S, and I understand his thinking and would like to cooperate as much as we can. But the investment risk is definitely larger.” Of course, this is Japan, where “the nail that sticks out gets hammered down.” Corporate executives are not known for sticking their necks out.

Another possible investor is Apple, which has mountains of cash and, at least under Steve Jobs, was always willing to jump into some new field – music, cell phones – to try to set it straight. This is a little more ambitious than the Lisa or the iPod and Jobs is no longer around to steer the ship, but Apple and Musk officials held a meeting last spring that stirred a lot of talk about a possible merger. A much more likely scenario, according to several commentators, is that Apple would become a major player in the Gigafactory.

And a Gigafactory it will be. Consider this. The three largest battery factories in the country right now are:

1)    The LG Chem factory in Holland, Mich. is 600,000 square feet, employs 125 people and produces 1 gigawatt hour (GWH) of battery output per year.

2)    The Nissan factory in Smyrna, Tenn. is a 475,000 square-foot facility with 300 employees puts out 4.8 GWH per year.

3)    A123 Systems’ battery factory in Livonia, Mich. is 291,000 square feet, employs 400 people and produces 0.6 GWH per year.

Both LG and Nissan received stimulus grants from the Department of Energy, built to overcapacity and are now operating part-time.

Now here’s what Musk is proposing. His Gigafactory would cover 10 million square feet, employ 6,500 people and produce 35 GWH per year of battery power. Basically, Musk’s operation is going to be ten times better anything ever built before, at a time that most of what exists isn’t even running fulltime. Does that sound like something of Henry-Ford proportions? Similar to Ford’s $5 a day wages, perhaps?

There are, of course, people who think all of this is crazy. In the Wall Street Journal blog, “Will Tesla’s $5 Billion Gigafactory Make a Battery Nobody Else Wants?,” columnist Mike Ramsey expresses skepticism over whether Tesla’s strategy of using larger numbers of smaller lithium-ion is the right approach. “Every other carmaker is using far fewer, much larger batteries,” he wrote. “Tesla’s methodology – incorrectly derided in its early days as simply using laptop batteries — has allowed it to get consumer electronics prices for batteries while companies like General Motors Co. and Nissan Motor Co. work to drive down costs without the full benefits of scale. Despite this ability to lower costs, no other company is following Tesla’s lead. Indeed, in speaking with numerous battery experts at the International Battery Seminar and Exhibit in Ft. Lauderdale a few weeks ago, they said that the larger cells would eventually prove to be as cost effective, and have better safety and durability. This offers a reason why other automakers haven’t gone down the same path.

But Musk has managed to produce a car that has a range of 200 miles, while the Leaf has a range of 85 miles and the Chevy Spark barely makes 82. Musk must be doing something right. And with Texas, Arizona, Nevada and New Mexico all vying to be the site of the Gigafactory, it’s more than likely that the winning state will be kicking in something as well. So, the factory seems likely to get built, even on the scheduled 2017 rollout that Tesla has projected.

At that point, Musk will have the capacity to produce batteries to go in 500,000 editions of the Tesla Model E, which he says will sell for $35,000. Sales of the $100,000 Model S were 22,000 last year. Does this guy think big or what?

To date, Silicon Valley doesn’t have a terribly good record on energy projects. Since Kleiner Perkins Caufield & Byers fell under Al Gore’s spell in 2006, its earnings have been virtually flat and the firm is now edging away from solar and wind investments. Venture capitalist Vinod Khosla’s spotty record in renewables was also the subject of a recent 60 Minutes segment. But, as venture capitalists say, it only takes one big success to make up for all the failures.

Will Tesla’s Model E be the revolutionary technology that, at last, starts making a dent in oil’s grip on the transportation sector? At least one investor has faith. “I’d rather leave all my money to Elon Musk that give it to charity,” was the recent evaluation of multi-billionaire Google founder Larry Page.