Posts

Of myths, oil companies and a competitive fuel market

I do not wish to join the intense dialogue concerning whether or not the government should allow exports of crude oil. Others are already doing a good job of confusing and obscuring the pros and cons of selling increased amounts of America’s growing oil resources overseas.

What I do want to do is just focus on the logic of one of the oil industry’s major arguments for extending the permitting of exports — again, not on the wisdom of exporting policy. Permit me to do so in the context of the industry’s long-standing argument concerning the pricing of gasoline to U.S. consumers. The argument is that more oil drilling in the U.S. will lower the price of gas and put America on the path to oil “independence.”

In somewhat of circuitous manner, oil companies are using the opposite of their domestic advocacy for “drill, baby, drill” policy as a way to keep prices lower at the pump. Their yin is that producing more oil in the U.S. and sending significant amounts overseas, combined with declining vehicular fuel demand, will lower gas prices. Economist Adam Smith would applaud the simplicity if he were alive and well. Their yang presents a bit more complicated set of “ifs.” That is, the industry presumes that fulfillment of the yen (excuse another pun) to export will result in more U.S. oil being drilled because of increased world demand generated by the assumed ability of the U.S. to produce oil at less costs than the world price for oil. It will also help foster infrastructure development in the U.S. to break up current log jams concerning oil transportation. Finally, it will facilitate more efficient refineries, allowing them to specialize in different types of oil. The yin and yang will result in (marginally) lower prices of gasoline — so goes the rhetoric and oil-industry-paid-for studies.

Paraphrasing Dr. Pangloss in “Candide,” the oil companies hope for the “best of all possible worlds.” But, before Americans run out and buy stock, note the price of gasoline does not directly reflect oil production volume. Indeed, gas prices, despite increased supplies, have gyrated significantly and now hover nationally over $4 a gallon. Generally, oil and gas prices relate to international prices, tension in the Middle East and investor and banker speculation — not always or directly domestic costs. Stockholders and executives of oil companies function not on patriotism but on profit and to the extent that the law permits, they will sell overseas to get the best price — in effect, the best dollar over payment for a barrel of oil. Consumers, I suspect, are rarely a significant part of their opportunity costing.

Unfortunately, lack of strong empirical evidence tempers the company’s argument that increased world demand will stimulate good things like refinery efficiency and log-jam-ending infrastructure. Maybe if the price per barrel is right (clearly, higher than it is now) and seems predictable for more than a small period of time, refinery and infrastructure developments will be positive. But, the costs to the consumer, in this context, will be higher. It will also be higher because shale oil is tight oil and more risky and costly to drill.

Oil independence is a myth suggested by oil industry and a non-analytical media. Certainly, the oil boom and less vehicular demand have generated less imports and less dependency. But we still buy nearly 300 billion dollars’ worth of oil every year to respond to need and we still produce far less than demand.

Somewhere in the dark labyrinth of each major oil company is a pumped-up (another pun), never-used, secret justification for franchise agreements impeding the sale of alternative fuels in their retail outlets. To alleviate guilt, it may go something like this: “Monopolies at the pump will allow us to make larger profits. You know we will someday soon want to give back some of the profits to consumers by lowering the price of gasoline.” If you believe this still-secret beneficence, let me sell you the Brooklyn Bridge.

There is another way to steady the gasoline market and lower consumer costs. Inexpensive conversions to allow older vehicles to use safe, cheaper and environmentally better alternative fuels (as opposed to gasoline), combined with expanded use by flex-fuel owners of alternative fuels, would add competition to the fuel market and likely reduce prices for consumers. Natural-gas-based ethanol is on the horizon and methanol, once the EPA approves, will follow, hopefully shortly thereafter. Electric cars, once costs are lower and distance on single charges is higher, will be a welcome addition to the competitive mix.

Outnumbered 100-to-1, Methanol Is Upbeat

“Why is it that we hear every day some new story about Elon Musk’s electric car, about Clean Energy Fuel’s efforts to build a CNG highway, or about some laboratory breakthrough that is at last going to bring us cellulosic ethanol, yet with methanol now cheaper than gasoline, you still never hear anything about it?”

That’s the question I posed to the three-member panel while serving as moderator for the wrap-up session at the 2014 Methanol Policy Forum in Washington last week.  The sponsors were the Methanol Institute, the Institute for the Analysis of Global Security (IAGS) and the Energy Security Council.

Anne Korin, co-director of IAGS, who earlier had moderated an even bigger panel that included former U.S. Senator J. Bennett Johnston, former National Security Advisor Robert McFarlane and former Ambassador to the European Union Boyden Gray, had a very unusual answer.  “If I may be permitted to be a bit cynical here,” she said, “I think the reason may be because methanol doesn’t require any subsidies.”  The implication, of course, is that those who come to Washington begging for money receive a lot more attention from Senators and Congressmen than those who don’t.

The question of politics versus economics had been raised at the outset of the daylong conference by Korin’s co-director at IAGS, Gal Luft, in his opening remarks.  “We’ve all heard this business about the circular firing squad and how the various alternatives to foreign oil shouldn’t be fighting each other,” he told the audience of about 400.  “But you have to acknowledge the importance of what goes on in Washington.  You can’t just talk about production you need money.  If you’re not at the table, that means you’re probably on the menu.

Luft showed a chart illustrating that while corn ethanol production exceeds methanol production by a factor of only 5-to-1 (14 billion gallons/year as compared with 2 bg/yr), the amount of money spent lobbying for ethanol is 50-to-1 (less than $100,000 vs. $5 million).  “When you add in the politics of the farm belt, it’s probably closer to 100-to-1,” he added.

So was anyone discouraged?  Not at all.  The news from industry executives is that methanol production is ramping up everywhere due to the bonanza of the fracking revolution.  It seems like only a matter of time before the idea of replacing large portions of our fuel imports with domestically produced methanol begins to command attention.

“In the past decade we closed down five methanol plants in the U.S. and moved them all to China,” John Floren, CEO of Methenex told the gathering of 400 at the Capital Hilton.  “The price of gas had become just too high.  Now we’ve moved two plants back from Chile and are looking at a third relocation.  We’ve got 1000 people working on our Louisiana site.  The chemical industry is starting to build as well.”

Tim Vail, the CEO of G2X, another methanol producer, had a similar take.  “The U.S. is a great place to invest right now,” he told the audience.  “The argument was always that you had to go to the ends of the earth to build methanol plants because that gas wasn’t available here.  Now all that has changed.  Our big worry is labor shortages but the construction industry is responding to our needs.  It takes away a lot of anxiety about having your assets appropriated by other countries.  China may seem like a good place to invest, but can you really trust the rule of law?”

Philip Lewis, chief technology officer of Zero Emission Energy Plants (ZEEP) was equally upbeat.  “I think the whole shale thing is being underestimated,” he said at the close of the morning session.  “It’s another industrial revolution.  And it won’t happen anywhere else because we have the thing that makes it work – private ownership of the resource.  In France, the government owns all the mineral rights and no one wants drilling on their land.”

But governments do have control over other things in this country and there was some questioning of whether federal agencies will be receptive to methanol as a fuel substitute or additive.  Matt Brusstar, deputy director of the EPA’s National Vehicle and Fuel Emissions Laboratory, claimed that his agency had been in the lead of methanol development for 30 years.  “Charlie Grady, who was in our department, was a big supporter of methanol,” said Brusstar.  “He even wrote a book about it.”  (Unfortunately, a Google search for Charlie Grady and methanol turns up no mention of Grady or his book.)  Patrick Davis, the director of the Fuel Cell Technologies Office in the Department of Energy, was even less encouraging.  “The Office of Science does not currently have any projects to create methanol as an end fuel,” he said.  “It could take a decade to sell enough methanol-compatible vehicles before a widespread distribution network would be feasible.”

When I queried Brusstar about Robert Zubrin’s documentation of the multi-thousand-dollar fines that the EPA is imposing for unauthorized conversions of engines to methanol, [See “Making the Case for Mars and Methanol,” Feb. 11] several government officials, plus Fuel Freedom Foundation director of research Mike Jackson, argued that faulty conversions can increase air pollution.

Despite the notable lack of enthusiasm from government agencies, however, there was a strong sense among the rank-and-file that methanol may be about to find a place in the sun.  “This is a much bigger crowd than we’ve ever had,” said one veteran of previous conferences.  “It’s a very exciting time for methanol.”

 

 

 

 

 

 

 

 

 

 

 

 

 

Progress on Fuel Efficiency: More is needed

Every now and then I will read a White House Blog.  They’re sort of a fun read when you’re depressed about the state of the world and the country.  The content always somehow reminds me of  Gene Kelly dancing in the street in the middle of the rain, or that old (possibly New Yorker) cartoon where the patient tells the psychiatrist that he is not doing well and the good doctor says ‘no you’re just fine, you’re happy and healthy.’  Probably neither is the proper analog to the politically necessary positive nature of the White House blurbs.  I marvel at times at the President’s ability to seek a better America, especially given the politics of the present.  While his optimism and tenacity don’t always come through as “Morning in America,” I believe that his attitude is based on a reasonable outlook about what the nation can do, if it can engage in an honest dialogue about key environmental and alternative fuel issues.

Last week’s blog focused on the White House’s effort to increase fuel efficiency standards.  It notes correctly that the President’s legislative approach to the environment has resulted in the toughest fuel economy standards in history:

“Under the first ever national program, average fuel efficiency for cars and trucks will nearly  double, reaching an average performance equivalent to about 54.5 miles per gallon by 2025….In 2011, the President also established the first-ever fuel efficiency and greenhouse gas standards for medium and heavy duty vehicles, covering model years 2014 through 2018.”

More is to come! Increased fuel efficiency standards are currently being addressed by the Administration, and the EPA is hard at work developing Tier 3 rules.

The Administration’s record is a decent one and has benefited the environment, lessened ghg emissions, and strengthened the economy. Regrettably though, fuel efficiency regulations primarily apply to new cars.  They should be matched by a cost efficient and comprehensive federal effort to encourage the conversion of older non flex fuel vehicles; they also should encourage Detroit to continue producing larger numbers of flex fuel cars.

In this context, EPA and Detroit automakers need to reach a consensus concerning effective engine recalibration alternatives, as well as an extension of consumer warranties and related financial coverage of recalibrated vehicles.  Without permitting older cars to achieve the fuel efficiency and environmental advantages of flex fuel vehicles, we will not be able to respond to Pogo’s admonition and Commodore Oliver Perry’s initial statement (paraphrased): that we, as a nation, have met the enemy, and he is us!

To grant primacy to new or relatively new flex fuel cars would increase the nation’s ability to reduce ghg emissions and other environmental pollutants (e.g. NOx and SOx). There are well over 200,000,000 non flex fuel cars in the U.S. that cannot readily use available fuel blends higher than E-15 and will not be able to use natural gas based ethanol that hopefully relatively soon will come on the market.

Lowering the certification costs of conversion kits by the EPA and increasing the number of manufacturers of those kits would bring down their price from around 1,000 dollars to the near 300 dollar level that is common in the “underground” market.  Simplifying legal conversion could  —and indeed would —-make an important environmental difference.  Such action would also open up the fuel market to competition, and likely lower the price of gas at the pump for consumers. Finally, such actions would also support the President’s objective to wean the nation off of oil and gasoline.  Oh Happy Day!  Go for it Gene Kelly and the American Association of Psychiatrists!  It might be time to show some real love for environmentally and efficiency neglected and needy older vehicles.

Oil and Natural Gas Prices and the Future of Alternative Fuels

I love Vivaldi’s Four Seasons, especially the music from the spring. I love the optimistic line from the poem by P.B. Shelley, “if winter comes can spring be far behind.”  The unique cold weather, the Midwest, East Coast and even the South, has been facing this year will soon be over and spring will soon be here. Maybe it will be shorter. Perhaps, as many experts indicate, we will experience a longer summer, because of climate change. But flowers will bloom again; lovers will hold hands without gloves outside, kids will play in the park… and natural gas prices will likely come down to more normal levels than currently reflected.

Last Friday’s natural gas price according to the NY Times was $5.20 per thousand cubic feet. It was “the first time gas had crossed the symbolic $5 threshold in three and half years, although (and this is important) the current price is still roughly a third of the gas price before the 2008 financial crisis and the surge in domestic production since then.”

Why? Most experts lay the blame primarily on the weather and secondarily on low reserves, a slowdown in drilling, and pipeline inadequacies. The major impact so far has been on heating and electricity costs for many American households, particularly low and moderate income households and the shift of some power plants from natural gas back to coal.

I wouldn’t bet more than two McDonald’s sandwiches on where natural gas prices will be in the long term. But I would bet the sandwiches and perhaps a good conversation with a respected, hopefully clairvoyant, natural gas economist-one who has a track record of being reasonably accurate concerning gas prices- that come cherry blossom time in Washington, the price of natural gas will begin to fall relatively slowly and that by early summer, it will hover between 3.75 to 4.25 per thousand cubic feet.

Natural gas prices over the next decade, aided by growing consensus concerning reasonable fracking regulations as reflected in Colorado’s recent regulatory proposals, and EPA’s soon to be announced regulations, should be sufficiently high to reignite modest drilling passions, improvements in infrastructure and increased supplies at costs sufficient to maintain an advantage for natural gas based fuels when compared to oil based fuels at the pump.

The present relatively low price of oil (Bent Crude $107 a barrel; WTI $97.00 a barrel) and its derivative gasoline ($3.30 a gallon) may impact the cost differential between gasoline and natural gas based fuels. But the impact could go both ways. That is, if the price of oil per barrel continues to fall and translate into lower costs for gasoline, the price differences between natural gas based fuels and gasoline would narrow. Conversely, if the price of oil goes lower than $90 a barrel, its present price, it likely will impede future drilling, particularly in high cost, hard to get at environmentally sensitive areas. This fact combine with renewed economic growth in the U.S., Europe and Asia, as well as continued tension in the Middle East and continued speculation could well result in a return to higher gasoline prices.

Clearly, the relationship between the cost of natural gas based fuels (CNG, ethanol and methanol) and gasoline is a critical variable in determining consumer behavior with respect to conversion of existing cars to flex fuel cars and the purchase of new natural gas cars (Based on the national pilot involving 22 states lead by Governor Hickenlooper(D) and Governor Fallin(R), as well as interviews with carmakers, creation of a deep predictable market for CNG fueled vehicles will bring down the price of such cars and give them competitive status with gasoline fueled vehicles).

The odds are that the lower costs of natural gas based fuels will serve as an incentive to buyers and existing owners to use them. That is, assuming problems related to fuel distribution as well as access and misinformation concerning the affect alternative fuels have on engines are resolved by public, non-profit, academic and private sectors. Maybe I will up my bet!

Can Ethylene Replace Gasoline?

The effort to replace oil-based gasoline in our cars with similar fuels derived from natural gas took a big step forward last week with the announcement that Siluria, a promising start-up, will build a $15-million demonstration plant in Texas

The plant will produce ethylene, the most commonly produced industrial chemical in the world and the feedstock for a whole raft of products in the chemicals and plastics industry. But Siluria, which is not yet a public company, is also planning demonstration plants that will produce gasoline. Initial estimates are that the product could sell at half the price of gasoline derived from oil. If these projections prove to be anywhere close to reality, we could be on a path to a fuel economy that is finally able to cut its dependence on oil.

The idea of producing ethylene from natural gas has been around since the 1980s but achieved little success. Several major oil companies invested millions of dollars in the process but finally gave up on it. Jay Labinger, a Caltech chemist who did much of the initial research, finally wrote a paper in the 1980s warning other researchers that it was a waste of time. He may have given up too soon.

Siluria is a California-based startup that has received much of its funding from Silicon Valley investors who tried to move from computers and the Internet into the energy space over the last decade. So far their success hasn’t been great. In fact Vinod Khosla and other Silicon Valley energy entrepreneurs were the subject of an embarrassing critique on “60 Minutes” only two weeks ago. The Siluria venture, however, may be the gusher that makes up for all the other dry holes.

The 1980s efforts concentrated on heat-activated processes whereby methane is split into carbon and hydrogen and then recombined into the more complex ethylene, which has two double-bonded carbons and four hydrogens. All these efforts proved far too energy-intensive, however, and never became economical.

Siluria has been trying a different approach, seeking catalysts that would facilitate the process at much lower energy levels. Moreover, the company has spurned the more recent approach of trying to design molecules that fit the chemicals just right and gone back to the old shotgun approach where thousands of candidates are tried on a catch-as-catch-can basis.

Defying all expectations, the process seems to have worked. Siluria has come up with a catalyst that it says promotes the breakdown and subsequent reassembly of methane at very low energy levels. It has built pilot plants in San Francisco, Menlo Park and Hayward, California and last week announced plans for building a full-scale demonstration plant in La Porte, Texas in conjunction with Braskem, the largest petrochemical manufacturer in South America. If that isn’t proof that Siluria is on to something, what is

The implications of this development are enormous. Natural gas is two to six times more abundant than oil in the world and is now selling at 1/5th the price for an equivalent amount of energy. The traditional tandem pricing of oil and natural gas prices has now been broken and gas is functioning as a completely different commodity, much cheaper.

The difficulty all along has been that natural gas is hard to put into your gas tank. So far efforts have involved compressing natural gas, which means storing it at 3600 pounds per square inch, or liquefying it, which requires temperatures to be lowered to – 260 degrees F. Neither is very practical and would require a whole new auto engine and delivery infrastructure.

Efforts to convert gas into a liquid have concentrated around methanol, which is the simplest alcohol and has been used to power the Indianapolis 500 racing cars since the 1960s. But methanol is the deadly “wood alcohol” of the Prohibition Era and raises fears about poisoning – although gasoline is poisonous, too. The Environmental Protection Agency has never certified methanol for use in auto engines, although an M85 standard has been permitted in California.

Synthesizing gasoline through Siluria’s ethylene-based pathway could solve all these problems. Ed Dineen, CEO of Siluria, says that the gasoline product could sell at half the price of today’s gasoline. With more natural gas being found all the time – and with $1 billion being flared off uselessly around the world each year – any success in turning natural gas into a readily accessible automobile fuel could have a revolutionary impact on our entire economy.

Is E85 the Solution to the Ethanol Debate?

Professor Bruce Babcock, of the Center for Agriculture and Rural Development at Iowa State University, believes he has a simple solution to the corn ethanol mandate problem – encourage people to fill their tank with fuel that is 85 percent ethanol instead of the current 10 percent.

“There may be a few good reason for cutting back on our consumption of corn ethanol,” says Babcock, who holds the Cargill Endowed Chair for Energy Economics. “But the reason the EPA is giving sure isn’t one of them.”

In case you haven’t been following, the Farm Belt is in an uproar over Environmental Protection Agency’s recent decision to cut back on the ethanol mandate from 14.4 billion gallons to somewhere around 13 billion for 2014. Iowa Senator Chuck Grassley blames “special interests” – meaning the oil companies – while Governor Terry Brandstat has talked darkly about a “war on corn.”

But dissatisfaction with the corn ethanol mandate extends well beyond the oil companies and the refineries. In December a coalition of liberals and conservatives – led by California Democrat Diane Feinstein and Oklahoma Republican Tom Coburn – introduced a bill to do away with the corn mandate altogether. “I strongly support requiring a shift to low-carbon advanced biofuel,” said Feinstein, “but corn ethanol mandate is simply bad policy,” “This misguided policy has cost taxpayers billions of dollars, increased fuel prices and made our food more expensive,” added Coburn.  “The time has come to end it.”

What’s the problem?  Well, the mandate – adopted by Congress in 2007 at the behest of President George Bush, Jr. – has fallen out of sync with the “blend wall” – the theoretical 10 percent mark where ethanol starts harming car engines. The mandate pushed up to 14.2 billion gallons last year while gasoline consumption actually dropped to 135 billion gallons last year from 142 billion gallons in 2007, pushing it way past the 10 percent benchmark.

Faced with this dilemma, refiners were forced to buy “credits” in the form of “renewable identification numbers (RINS),” which give them bookkeeping credit for consuming ethanol. But the pressure on the market pushed the price of RINs from pennies per gallon to $1.40 last August, pushing up the price of gasoline. Hence the rebellion and President Obama’s apparent instructions to the EPA to cool it on the mandate for 2014.

Professor Babcock says this is all a result of the artificial barrier limiting ethanol content to 10 percent. “E85 [a blend that is 85 percent ethanol] is selling all over Iowa at 15 percent less than gasoline,” says Babcock, who is originally from southern California. “That actually makes it a little more expensive than gasoline because you only get 80 percent of the energy.  But last August E85 was selling 25 percent below gasoline and it was a bargain.  The notion that cars can’t tolerate mixes of more than 10 percent ethanol is purely fictional.”

The 10 percent blend wall is based on the premise that putting more ethanol in your tank can harm your engine. Several years ago the auto companies have announced they will not honor warrantees on older cars that use more than 10 percent ethanol. The EPA has approved E15 (15 percent ethanol) for cars built after 2001, even doing elaborate tests to prove it could work, but no one has paid much attention. “The automakers say, `We didn’t build those older cars for E15 and we don’t want them running on E15,’” says Babcock.  “As far as they’re concerned, that’s the end of it.”

Without much fanfare, however, both Ford and GM are now manufacturing close to half their cars for “flex-fuel” – capable of burning any mix of gasoline and ethanol – or even possibly methanol, which has not been tested yet. “There’s a little embossed insignia on the back of the car but it’s easy to miss,” says Babcock.  “There are now 17 million flex-fuel cars on the road, although most people who have them don’t even realize it.”

Adjusting older vehicles to flex-fuel isn’t that difficult, either.  On the oldest models, it involves only replacing a few rubber fuel lines with aluminum, which a good mechanic could do it for less than $200 – if it weren’t illegal.  On newer models it requires only an adjustment to the software.  New flex-fuel cars sell for the exact same price as ordinary gasoline vehicles.  “GM has done a really good job of figuring out flex-fuel technology,” says Babcock.  “All their trucks are now designed for it. Chrysler is coming around as well but the Japanese cars have stayed away from it.  They’re putting all their bets of hybrids, hydrogen and electric vehicles.  They’re not at all interested in biofuels.”

Babcock’s proposal, outlined in a paper released earlier this month, is for the EPA to sanction E85 so it can start selling somewhere else besides Iowa, where ethanol remains popular and corn is aplenty. “It just doesn’t make sense to have all the stations concentrated in the Midwest,” says Babcock. “The real place for these cars should be on the East and West Coasts.”

Who would pay for upgrading all these stations to handle E85?  Babcock’s answer is the oil refineries. “The cost would be about $130,000 per station or 20 cents for each additional gallon they could expect to sell,” he says.  “If the price of RINs becomes too high, the refiners will have to do something.  People call me naïve to think they will spend all that money building new pumps but they’re already done it in several instances. I’m not some wide-eyed academic economist.”

But the refineries do have another option and that is to go to Congress and the President and insist that the mandate be lowered – which is what they’ve just done. And with a rebellion against ethanol brewing in the non-farm states, it isn’t likely the mandate will be reinstated any time soon – at least until the Presidential candidates start trooping to Iowa again.  On the other hand, Babcock’s proposal for approving E85 so that the 17 million flex-fuel cars already on the road can start using it makes perfect sense.

At this point, the “blend wall” may more of a mental barrier than a physical one. Once we break through it, ethanol, methanol and a lot of other things become feasible.

There’s Gold in Them Thar’ Flares

Walter Breidenstein may be the only CEO in America who still answers the company phone himself. If his operation is still something of a shoestring, it’s because he’s spent four years trying to duel with perhaps the most formidable foe in the country, the oil companies.

“I’ve been trying to get into North Dakota for four years to show them there’s a way to make money by stopping flaring,” says the 48-year-old who started his entrepreneurial career at 15 by washing dishes. “The oil companies have done everything they can to keep me out of the state and the bureaucracy has pretty much goes along with them. The companies know that as soon as they acknowledge we’ve got a workable system here, they’d have to buy one of our rigs for every well in the state.”

North Dakota, in case you haven’t heard, has become one of the biggest wasters of natural gas in the world by flaring off $1 billion worth a year while producing carbon emissions equal to 1million automobiles.  But oil is what the drillers are after and, as it was in the early days of the oil industry; gas is regarded pretty much as a nuisance. The result is gas flares that make the whole state look like neighboring Minneapolis from outer space.

The flaring has generated a lot of negative publicity, environmentalists are up in arms and landowners have sued over lost royalties. The big guys are starting to move into the state. The New York Times ran an article this week about new pipeline construction, fertilizer factories and GE’s “CNG in a Box,” which will capture flared gas and sell it asnatural gas.

Breidenstein has a different idea.  “Somewhere around 2000 I started reading about methanol technology and realized it was a very undervalued resource,” he says. “Then I read George Olah’s The Methanol Economy in 2006 and that convinced me.  At Gas Technologies we’ve been trying to put Olah’s vision into practice.”

Gas Technologies has developed a $1.5 million portable unit that captures flared gas and converts it to methanol. “It’s a very accessible device,” says Breidenstein.  “You can move it around on a flatbed truck.”  The company ran a successful demonstration of a smaller unit at a Michigan oil well last fall but still hasn’t been able to break into North Dakota.

“The oil companies’ attitude is that money is no problem as long as they don’t have to spend it,” says Breidenstein.  “I’ve been in the business 25 years and I know where they’re coming from. But the problem is no one is forcing them to deal with flaring. And as long as they can keep throwing that stuff into the atmosphere for free, nobody’s going to look for a solution.”

You’d think with a billion dollars worth of natural gas being burning off into the atmosphere each year, though, there’d be some say to make money off it and that’s what frustrates Breidenstein.

“Our rig costs between $1 and $2 million dollars,” he says.  “But by capturing all the products of flared gas, you can make around $3500 per day.  That puts your payback at around three to four years.  But the oil companies don’t think that way. They won’t look at anything that goes out more than six months.

That puts things in the hands of state regulators and so far they have sided with the oil companies. “By statute, the oil companies are allowed to flare for a year it there’s no solution that’s economical,” says Alison Ritter, public information officer for the North Dakota Department of Mineral Resources.  “There’s nothing we can do to require them to buy from one of these boutique firms. Many oil companies have already committed their gas to pipeline companies and they can’t back out of those contracts.”  Still, the pipelines may not be built for years. “You have to understand, the Bakken Oil Field is 15,000 square miles, the size of West Virginia,” adds Ritter.  “It’s hard to service it all with infrastructure. We’re building pipelines as fast as we can.” Of 40 applications for flaring exemptions submitted this year the state has approved two and denied one, with the other 37 pending.  While they are pending, flaring goes on.

Of course if Gas Technologies were to start receiving orders right now, they’d be hard pressed to produce a half-dozen of them let alone the 500 that the state might require. “We’ve had talks with venture capitalists but if you’re not from Silicon Valley, they’re not interested,” says Breidenstein.  “But we’ve got a business model here and we know it can work.”

At least someone has taken notice. This year Crain’s Detroit Business rated Gas Technologies Number One in the state for innovative technology, ahead of 99 other contenders, including General Motors, Ford, Volkswagen, Whirlpool, Dow Chemical and the University of Michigan.  “Because the Walloon Lake company’s patents are potential game-changers, its patents rank high on the value meter with a score of 156.57 (anything over 100 is considered good),” said the editors.

It may not be long before others start noticing as well.

Building the Natural Gas Highway: The Journey of Thousands of Miles Begins in Newport Beach

California still is seen as the state that exports innovation, despite the fact that it has seen some tough economic times of late. In this context, I was pleased to see the recognition granted by the Orange County Register (Nov 6) to the Clean Energy Fuel Corporation, and its efforts to build the Natural Gas Highway. I was even more surprised to find out that the corporate offices were located near my own office. Clearly, the popularity of natural gas and its derivatives, ethanol and methanol, are on the uptake since the President’s State of the Union address indicating the nation’s economy and environment  would benefit if it weaned itself off oil and by implication gasoline. Even before Obama’s speech, there was a growing recognition among many Americans– including environmental and business leaders– that natural gas could become the core of a strategy aimed at reducing greenhouse gas (GHG) and other pollutants, lowering the costs of vehicular fuel, and reducing dependency on oil imports, thus providing funds for investment in the U.S. Clean Energy Fuels Corporation, located in Newport Beach, is making it easier for consumers to access natural gas for their vehicles. According to the story in the Register, it has invested more than $300 million in the last two years on natural gas fuel stations across the nation. Most of the more than 400 stations that they have developed and  offer only compressed natural gas (CNG), a fuel that works better for comparatively short trips ( e.g. buses, taxis, garbage trucks, short hall trucks, local consumers ). Current and future placement of stations will increasingly offer liquid natural gas (LNG). LNG works better than CNG for long distance trips. Are the leaders of the Clean Energy Fuel Corporation nuts?  Maybe they are…but I don’t believe so.  While, the Corporation has yet to turn a profit (apparently after 15 or 16 years), since going public in 2007, their market value is now more than 1 billion dollars. Their phones are ringing. Large retailing companies relying on trucks, long distance trucking companies, bus manufacturers, taxis and bus companies seem to be gravitating toward use of cheaper natural gas as a fuel. But these users and potential users need assurances that natural gas fuel stations will be reasonably accessible. Clean Energy Fuel aims to provide such assurances. Many respected financial analysts believe that the Clean Energy Fuel Corporation is on the cusp of and will benefit financially from the increased acceptance and growth of alternative transportation fuels, particularly natural gas. Assuming both the sizable price gap between oil and natural gas remains and the corresponding price gap between natural gas fuel and gasoline as well as between natural gas and diesel fuel stays relatively large; Clean Energy Fuel Corporation’s future looks bright. Yes, it will have rivals. Shell Oil, according to the Register article, apparently is going to start selling LNG at existing truck stops. Soundings that I have picked up from natural gas leaders, CEOS of businesses dependent on trucking and diverse investors suggest an evolving interest in developing both CNG and LNG fuel stations and the Natural Gas Highway. In this context, 22 states, under the bipartisan leadership of Governor John Hickenlooper (D) of Colorado and Governor Mary Fallin (R) of Oklahoma, have initiated a collaborative project to buy CNG outfitted cars from Detroit to replace old state vehicles, when their time passes. Detroit in turn has promised to develop a less expensive CNG vehicle for the participating states which could ultimately benefit consumers. Given recent projections of the market for natural gas fuel by government and reputable private and nonprofit groups and increased advocacy for alternative fuels by a coalition of environmental, nonprofit and business groups, I wouldn’t bet against Clean Energy Fuel’s future health. My hope, however, is that it and, indeed, its competitors add room for natural gas derivatives such as ethanol and methanol in their planned natural gas stations.  Apart from generating use by owners of flex fuel cars now in existence, their agreement to do so would encourage (the relatively inexpensive and easy) conversion of existing vehicles to flex fuel vehicles. Significantly, EPA has certified the use of E10 in all vehicles, E15 in vehicles after 2001 and E85 in approved flex fuel vehicles. Hopefully, EPA will soon certify methanol as well as approve an expanded list of conversion kits for existing older vehicles. These approvals are possible, if not probable, given the environmental, economic and consumer benefits of alternative fuels and the evolving politics of fuel. Allowing oil companies to sustain the very restrictive rules now governing the vehicular fuel market will continue to prop up America’s dependency on imported oil as well as support relatively high fuel costs and increased environmental degradation.   President and CEO Andrew Littlefair of Clean Energy Fuel indicated, “With cheaper, abundant fuel, a network of stations, [and] redesigned engines …the time for natural gas transportation has arrived.” I would add, the time for natural gas based ethanol and methanol has also arrived. I commend Clean Energy Fuel for its initiative in developing the Natural Gas Highway. The Company, borrowing from President John Kennedy, has begun an important journey of thousands of miles in Newport Beach. Contrary to (and paraphrasing) the poet Robert Frost, hopefully the road they are building will be very well travelled.  Maybe a couple of leisurely  lunches near the ocean in beautiful Newport Beach could convince my colleagues at Clean Energy Fuel  to consider working with producers of natural gas based ethanol and methanol as well as interested states and localities to  extend  the Natural Gas Highway to ethanol and methanol. It would be good for traffic and their bottom line, good for development of related commercial activities and, most important, good for America

The U.S. and China on methanol: Two roads converge

Nobel-Prize-winning chemist George Olah recently put methanol front and center again with a powerful Wall Street Journal editorial arguing for the conversion of carbon dioxide emissions from coal plants into methanol for use as a gasoline substitute in our car engines. Co-writing with University of Southern California trustee Chris Cox, Olah noted, “Thanks to recent developments in chemistry, a new way to convert carbon dioxide into methanol — a simple alcohol now used primarily by industry but increasingly attracting attention as transportation fuel — can now make it profitable for America and the world to reduce carbon-dioxide emissions.”

The authors argued that President Obama’s recently announced policy of mandating carbon sequestration for emissions from coal plants wastes a potentially valuable resource. “At laboratories such as the University of Southern California’s Loker Hydrocarbon Research Institute [founded by Olah], researchers have discovered how to produce methanol at significantly lower cost than gasoline directly from carbon dioxide. So instead of capturing and “sequestering” carbon dioxide — the Obama administration’s current plan is to bury it — this environmental pariah can be recycled into fuel for autos, trucks and ships.”

Olah, of course, has been the principal advocates of methanol since his publication of “Beyond Oil and Gas: The Methanol Economy,” in 2006.

To date, he has been recommending our growing natural gas supplies as the principal feedstock for a methanol economy. But the emissions from the nation’s coal plants offer another possibility.

This is particularly important since indications are that the Environmental Protection’s Agency’s assumption that a regulatory initiative will “force” the development of carbon-sequestering technology may be mistaken. A recent report from Australia’s Global CCS Institute said that, despite widespread anticipation that carbon capture will play a leading role in reducing carbon emission, experimental efforts have actually been declining.

The problem is the laborious task of storing endless amounts of carbon dioxide in huge underground repositories plus the potential dangers of accidental releases, which have aroused public opposition. Olah and Cox write, “By placing the burden of expensive new carbon capture and sequestration technology on the U.S. alone, and potentially requiring steep cuts in domestic energy to conform to carbon caps, the proposal could send the U.S. economy into shock without making a significant dent in global emissions… In place of expensive mandates and wasteful subsidies, what is needed are powerful economic incentives. These incentives should operate not just in the U.S., but in other countries as well.”

All this brings into stark relief the diverging paths that China and the United States have taken in trying to find some alcohol-based fuels to substitute in gas tanks. While Olah has been advocating a transformation to a methanol economy in this country, China is actually much further down the road to developing its own methanol economy. There are now more than a million methanol cars on the road in China and estimates show the fuel substitutes for 5-8% of gasoline consumption — about the same proportion that corn ethanol provides in this country.

In this country, the proposal has been that we derive methanol from our now-abundant supplies of natural gas. California had 15,000 methanol cars on the road in 2003 but curtailed its experiment because gas supplies appeared to be too scarce and expensive! Instead, the main emphasis has been on tax incentives and mandates to promote corn ethanol.

China has vast shale gas supplies and could benefit from America’s fracking technology. We could benefit strongly from China’s greater experience in developing methanol cars. The pieces of the puzzle are all there. Perhaps Olah’s proposal may be the catalyst that puts them all together.

Ironically, all this began with a Chinese-American collaboration in 1996. At the time, China had little knowledge or interest in methanol but was persuaded by American scientists to give it a try. Ford provided a methanol engine and China began ramping up its methanol industry and substituting it for gasoline. As a result, China is now the world’s largest producer of methanol, with about one-quarter of the market.

A year ago the Chinese national government was about to mandate a 15% percent methanol standard for gasoline when it ran into opposition from executives in its oil industry. Those leaders have since been deposed, however, and the 15% mandate may go ahead this year. In the meantime, provincial governments  have developed their own standards, with the Shanxi province west of Beijing in the lead.

Ironically, because methanol is only half the price of gasoline, many local gas stations are diluting their gasoline with methanol anyway in order to shave their costs. As a 2011 Energy Policy article by Chi-jen Yang and Robert B. Jackson of Duke University’s Nicholas School of the Environment reported, Private gasoline stations often blend methanol in gasoline without consumers’ knowledge… In fact, its illegal status makes methanol blending more profitable than it would be with legal standards. Illegally blended methanol content is sold at the same price as gasoline. If legalized, standard methanol gasoline would be required to be properly labeled and sold at a lower price than regular gasoline because of its reduced energy content. Such unannounced blending is now common in China.”

So both countries are feeling their way toward a methanol economy. As Olah points out, the problem in the U.S. is that the various advantages given to ethanol have not been extended to methanol.One means of addressing this inequity would be for Congress to pass the bipartisan Open Fuel Standard Act of 2013, which would put methanol, natural gas, and biodiesel on the same footing as ethanol (but without subsidies and without telling consumers which one to choose) for use in flex-fuel cars.

In China, the concern is about coal supplies but this could be alleviated with help from America’s fracking industry or by implementing Olah’s new technology for tapping coal exhausts.

Either way, the pieces are all there. It may be time to start putting them together.

Model building, Playboy and the impact of ethanol on gasoline prices

I recently read a number of provocative articles (or their summaries) by MIT’s Christopher Knittel and Aaron Smith. They faulted a pair of respected researchers from Iowa State University, Dermot Hayes and Ziaodong Du, in somewhat harsh tones. According to Knittel, the Iowa State pair, in their ethanol-related studies over a three year period (from 2009 through 2012), exaggerated the impact of ethanol on gas prices using relatively low present day ethanol blends.

I thought I was reading the script for a new urban crime show about drugs. Knittel, frequently, used terms like crack ratio and crack spread, ostensibly to note the weak link, found by Hayes at Iowa State, between the prices of ethanol and oil and both to gas costs at the pump. According to the authors, the price of gasoline is not substantially affected by the crack ratio; that is, the relative value of gasoline compared to oil or the price of gasoline divided by the price of oil and the current volume of its ethanol content.

Knittel’s papers angered Hayes, of the Iowa study. He claimed that, over time, the crack ratio and crack spread reflected a pretty strong causal relationship to gas prices. Language in his response to Knittel’s critique reminded me of those wonderful days when I was a dean, listening to different faculty, sometimes personally and sometimes based on methodology, criticize other faculty based on differing research results. The search for academic truth is often a noble road, but paraphrasing Robert Frost, a “road less traveled” — a road often full of human frailty and intellectual potholes.

Despite their critique of each other, both Knittel and Hayes’ studies are important and both, when read in context, should help one better understand the role of ethanol in affecting the cost of gas at the pump. Knittel is more right than wrong when he indicates that the crack ratio and spread does not fully explain the effect of ethanol on gas and oil prices, over time, and he is also correct in challenging the model used by Hayes to identify a reduction of $0.89 to $1.09 on gas prices because of higher ethanol production and higher crude oil prices.

Hypothetically, in isolation from other variables, the higher the crack ratio, the higher the price of gasoline. Further, if the price of ethanol is relatively low or on a downward trend, increased use of ethanol in gasoline blends, in theory, would cause the crack ratio to go down and the spreads to be higher, assuming gas prices remain the same or increase. Good news for consumers! Right? Maybe? Not always? Not at all? Not sure? What if?

I cannot claim real modeling expertise and would not, even for a minute, arbitrate between Knittel and Hayes concerning their use of models and its result — in terms of Hayes, significant impact of ethanol, in terms of Knittel, minor impact of ethanol.

But in terms of the policy argument between them, I suspect Knittel comes out the winner (full disclosure: I did graduate from MIT and while I love Iowa’s rolling hills, I do not like the climate and the fact that the state does not have a great symphony, nor a NFL football or American League baseball team). He points out that the crack ratio’s fluctuations in the ‘80s occurred when oil prices both declined and increased. Ethanol was not a factor and the movements in the crack ratio were not based on ethanol production. He seemingly, correctly, faults the folks in Iowa for not using the crack spread model in their 2011 and 2012 papers to evaluate the impact of eliminating ethanol because the two models —crack ratio which they used and crack spread which they didn’t — produce significantly different results and policy implications.

What does the dispute over models and model use have to do with public policy? A lot! The ethanol supporters touted the Iowa studies to support their claim that increased ethanol use reduces costs to consumers in a major way. Conversely, the ethanol critics suggest that the Knittel analysis debunks the assertion that use of ethanol as a blend will reduce gas prices in a major way.

Knittel suggests the Iowa studies vastly overstate the cost-related benefits of ethanol to the consumer and that Iowa’s model disregards or blurs the effect of price changes and swings in price of both ethanol and oil. Knittel also indicates that that the relationships between oil and gas prices, as well as oil, gas and ethanol prices are much less precise and more complicated than indicated by Hayes’ modeling efforts. Prices of all three fuels are much more subject to behavior and external events than acknowledged by either Knittel or Hayes.

The dialogue between Knittel and Hayes is helpful in sorting cost and price issues regarding ethanol and gasoline. I hope they continue at it, with less emotion, and with analyses better grounded in methodological analyses that generate a better job of linking model building with experience and empiricism. Meanwhile, no matter whether you believe the effect of ethanol on gas prices is high, moderate or low, if the U.S. government acquiesces in the use of higher ethanol blends like E60 and E85, and if the cost spread between ethanol and gasoline continues, an increasingly visible positive impact on fuel prices will likely be witnessed at the pump. Apart from any possible price differential related to use of higher blends, increased use of ethanol as an alternative transitional transportation fuel is in the public interest. According to most reputable studies, such use will respond well to many environmental problems caused by gasoline and it will help reduce America’s need to import oil…a continuing security problem.

Epilogue: I once taught a reasonably popular class on policy development and models. To liven up the class, I told the students that economic and policy models are abstractions of reality and to the extent that the models’ abstractions helps students understand reality, they are “good” models. They asked for examples. It was a late evening and I was tired. I told them to go look at the centerpieces in Playboy and Playgirl. Both presented models of airbrushed men and woman. At our next class, I asked the students if the models increased their understanding of men and women. They were bright and eager students, at least for this assignment, and they indicated, “No.” The models tilted too far toward abstractions and too far away from real world experience. They seemed to learn a lesson about the value of at least some models.