Posts

Are Hydrogen Cars the Future – Again?

The hydrogen car may be on the road to another comeback – again.  At the annual auto show in Los Angeles last week, both Honda and Hyundai unveiled “concept cars” of hydrogen models they expect to be available by 2015.  As a result, the automobile press has been filled with stories its revived prospects.

“For a long time, hydrogen fuel-cell vehicles were seen as a tantalizing technology to help reduce society’s reliance on oil,” Brad Plumer wrote in the Washington Post. “But the vehicles themselves were seen as forbiddingly expensive. Not the pendulum may be swinging back.”

“Toyota made a decagon – the fuel-cell car is going to be a big part of our future,” wrote Bradley Berman in The New York Times, quoting Toyota spokesman John Hanson.  “Today Toyota is not alone,” he continued. “Four other carmakers – General Motors, Hyundai, Honda and Mercedes-Benz – are also promising fuel-cell cars in the next few years.”

The prospect of an automobile running on hydrogen is indeed perpetually attractive.  Hydrogen is the most common element in the universe.  When combined with free oxygen in the atmosphere it “combusts” to produce H2O – water.  There are no other “exhausts”. Thus hydrogen promises transportation absolutely clean of any air pollution.  No global warming, either.

But it isn’t quite that simple.  The question that always presents itself is, “Where do you get the hydrogen?” Although hydrogen may be the most common element on earth, all of it is tied up in chemical compounds, mostly methane and water.  Accessing this hydrogen means freeing it up, which requires energy.

Most of our commercial hydrogen is made by “reforming” natural gas, which splits the carbon and hydrogen in methane to produce carbon dioxide and free hydrogen. That doesn’t help much with global warming.  Another method is to split water through electrolysis. That is a much cleaner process but requires a considerable amount of electricity. Depending on what power source is used, this can produce zero or ample emissions. If it’s coal, the problem is made much worse. If it’s clean sources such as solar or nuclear, then there can be a strong advantage. In the 1930s, John Haldane proposed giant wind and solar farms that would generate hydrogen that could fuel all of society. Such facilities generating hydrogen for transportation would be a step toward such a utopia.

Even then, however, there are problems.  Hydrogen is the smallest molecule and leaks out of everything.  It is very difficult to transport.  Joseph Romm, a disciple of alternative energy guru Amory Lovins, was appointed head of hydrogen car development program under President Bill Clinton and worked for two years on its development.  In the end, he became very disillusioned and wrote a book entitled The Hype About Hydrogen, in which he argued that the idea really wasn’t practical. Romm is now one of the country’s premier global warming alarmists on ClimateProgress.org.

What has apparently brought hyfrohgen cars back to the forefront has been the substitution for platinum as the principal catalyst in the fuel cell process.

A fuel cell produces an electric current by stripping the electron off a hydrogen atom and running it around a barrier that is otherwise permeable to a naked proton.  The proton and electron are reunited on the other side of the barrier, where they combine with free oxygen to form water.  Until recently, platinum was the only substance that could fill this barrier function. This made fuel cells very expensive and raised the question of whether there was enough platinum in the world to manufacture fuel cells in mass production.  But several platinum substitutes have now been found, making fuel cells considerably cheaper and more accessible.

Estimates are now that next year’s Hyundai and Honda FCVs will sell for about $34,000, which puts them in the range of electric vehicles such as the Nissan Leaf and the Toyota Prius.  (The Tesla, a luxury car, is  priced in a much higher range,)  The problem then becomes fueling.  The FCV offers considerable advantages over the EV in that it has a range of 300 miles, comparing favorable to gasoline vehicles.  It can also be refilled in a matter of minutes, like gasoline cars, whereas recharging  an EVs can take anywhere from  20 minutes to three hours. But hydrogen refueling stations have not materialized, despite former governor Arnold Schwarzenegger’s promise of a “hydrogen highway.” At last count there were 1,350 EV recharging stations around the country but only ten hydrogen stations, eight of them In Southern California.

All this suggests that neither hydrogen cars or electric vehicles will be sweeping the country any time soon.  Neither the Chevy Volt nor the Nissan Leaf have sold well and are not expected to do much better next year.  If you read the press stories carefully, you soon realize that the reason the automakers are constantly cycling back and forth between electric and hydrogen cars is that they are trying to meet California’s requirements for low-emissions vehicles that will allow them to continue selling in the state. The problem, as always, is consumer resistance..  The automakers can manufacture all the hydrogen and electric cars they want but consumers are not always going to buy them, especially at their elevated price.  So the manufacturers will end up dumping them on car rental agencies where they will sit on the back lots, as did the first generation of EVs.

There is, however, one type of alternative that succeeded handsomely in California and had widespread consumer acceptance, although it is completely forgotten today.  That is methanol.  In 2003, California had 15,000 cars running on blends of up to 85 percent methanol.  Consumers were extremely happy and did not have to be dragooned into buying them.  Refueling was easy since liquid methanol slots right into our current gas stations. Cars that run on methanol can be manufactured for the same price as cars that run on gasoline.

The experiment only ended because natural gas, the main feedstock for methanol, had become too expensive.  In 2003, natural gas was selling as high as $11 per mBTU, making it more expensive than gasoline.  That was before the fracking revolution.  Today natural gas sells for less than $4 per mBTU and the industry is coping with a glut.  Methanol, which is already produced in industrial quantities, could sell for $1 less than motorists are now paying for energy equivalent in gasoline.  Moreover, methanol can be made from garbage and crop wastes and a variety of other sources that would reduce it’s carbon footprint.

Hydrogen and electric cars each have a future and it is good to see the auto companies keep experimenting with them.  But each has impediments that are going to be difficult to overcome. Methanol, on the other hand, is a technology that could be implemented today at a price that not require subsidies.  Even if it is only perceived as a “bridge” to some more favorable, low-carbon future, it is worth pursuing now.

 

The Principal Impediment to Alternative Fuels Is – Government Regulation?

In their path-breaking study, “Fuel Choice for American Prosperity,” the Energy Security Council carefully outlines the dilemma that our complete dependence on oil for transportation has created.

“It’s not the oil we import, it’s the price,” was the way they summarized it. As I outlined in a previous post the authors show how OPEC still controls the bulk of the world’s oil reserves and has not increased its output since the 1970s. As a result, even though we have increased domestic production dramatically and cut down on consumption, we are actually paying more for our oil imports than we were ten years ago. Why?  Because, OPEC is still able to manipulate the price to keep it at $100 a barrel. It’s not the black stuff we import that crimps our economy, it’s the price of oil we must accept from a monopolistic cartel.

So what to do?  Do we set up protests outside OPEC’s corporate offices in Vienna?  Do we bring an anti-trust suit in some world forum? People have actually tried such things and gotten nowhere. No, the only way to extricate ourselves from this market is to break the monopoly that oil has on our transportation system. If oil had competitors, it will start acting like any other commodity and respond to supply and demand. The key to breaking the OPEC monopoly, says USESC, is to develop alternative fuels.

When it comes to asking why we have not made more progress in developing alternative fuels, however, USESC has a surprising answer: government regulation. Government regulation? How can that be? I thought the government was doing everything it could to foster alternatives and try to lower our oil imports. Well, as usually happens when the government gets involved in manipulating a market, things quickly get complicated and murky. Here’s what has happened:

CAFE standards. When Congress first started setting corporate fleet average standards, responsibility was given to the Environmental Protection Agency. In retrospect, this was an odd choice, since EPA is more concerned with air pollution than reducing oil consumption. The Department of Energy would have been a more logical choice. This didn’t become visible in the 1980s when pollution concerns centered on the combustion products of sulfur and nitrogen. But now that carbon dioxide and global warming have become the principal concerns, the EPA has subtly changed its emphasis. As USESC points out; “CAFE’s initial energy security centric vision has been blurred by the desire to use the law to promote greenhouse gas emission reduction goals.”

In its latest regulatory effort, for example, the EPA will reward auto companies for introducing alternative fuels by applying a “multiplier” to their corporate fleet average beginning in 2017. Every electric and hydrogen fuel cell vehicles will count as two vehicles in the denominator of the corporate average, phasing down to 1.5 by 2021. For plug-in hybrid electric vehicles (PHEVs) and compressed natural gas vehicles (CNG), the multiplier will be 1.6, phasing down to 1.3.

All this seems fair enough. EVs and FCVs use no gasoline and plug-in hybrids are only partially dependent on oil. The real problem, however, is that flexible-fuel vehicles – cars that are designed to burn ethanol, methanol or gasoline – have only been given credit based on how much E-85 they burn in real-world driving. The auto manufacturers have used this to avoid making improvements in car efficiency. This is regrettable because flexible fuel engines burning either ethanol from homegrown corn or methanol derived from natural gas would be the best say to cut down on imported oil. Both methanol and ethanol are liquids and fit right into our current gas station delivery system. Compressed natural gas and electricity, on the other hand, require a whole new replenishing system. Yet the EPA remains wary of both ethanol and methanol because they produce carbon exhausts. CNG also produces carbon exhausts, of course, and EVs drawing power from coal or natural gas will produce exhausts at the power plant. The EPA has tried to compensate for this by adding upstream carbon releases for EVs and other alternative fuels but it does not do the same for gasoline!  In short, the whole multiplier system is a mess. The EPA would do much better just trying to reduce oil dependence rather than bringing carbon emissions into the equation.

Costs of converting to alternative fuels: One of the most important steps in developing alternative fuels is converting existing gasoline vehicles to run on other fuels.

In general, there are three types of conversions – switching a gasoline or diesel car to run solely on another fuel (dedicated), changing a vehicles to run on higher alcohol blends (flex fuel), or installing an additional fuel tank so that the vehicles can burn the competing fuel as well (bi-fuel). In American, however, onerous regulations and staggering costs of conversion has deterred consumers.

The study points out that installing a CNG tank in an American car costs $10,000 while the same tank in Europe can be installed for $3,800. The difference is the strength of the tank as dictated by the EPA. Of course we don’t want to be in a situation such as Pakistan where CNG cars are exploding due to poor tank quality.  But even in comparison to other developed countries, U.S. regulatory requirements are excessive. 

Taxing by volume instead of by energy content: The federal and state governments places taxes on gasoline and any other product used to propel trucks and automobiles. The logic here is that the money goes into special highway trusts that maintain the roads. But the tax is imposed by the gallon rather than by energy content. USESC maintains that this is discriminatory because methanol, ethanol and other non-gasoline products have less energy density and therefore require more volume for the same amount of energy. This is a fine point and might be disputed by the oil industry, which would say if ethanol and methanol have less energy content, that is simply their tough luck. Ethanol, on the other hand, has been exempted from the federal highway tax and most state gas taxes, which is what makes it economical to add to gasoline.

The ban on methanol: Finally, although the USESC report does not even mention it, the biggest regulatory impediment to alternative fuels is the EPA’s failure to authorize the use of methanol in gas tanks. Putting anything in your gas tank requires permission from the EPA because of air pollution considerations. Although methanol actually produces less nitrous oxides and less particulate matter than gasoline, the EPA has never given it an OK. Although methanol made from natural gas might be the best alternative for replacing gasoline, it is does not yet have EPA approval.

Changing any and all of these regulations would require a huge concerted effort by some constituency that had a strong material interest in pushing it through Congress. Unfortunately, there is no such group. The natural gas industry is not yet organized around the issue and is more concerned about defending fracking and opening up natural gas exports. T. Boone Pickens is pushing CNG for trucks through his Clean Energy Fuels but there is no similar effort to promote the use of natural gas in cars. The entire farm bloc is behind corn ethanol, of course, which is why it has been so successful. But there is no similar interest promoting methanol, which may be just as good an alternative or better.

Under these circumstances, the best alternative is to persuade the auto manufacturers to produce flex-fuel vehicles that can run on any fuel – natural gas, hydrogen, biodiesel, E85 (85% ethanol) or M85 (85% methanol). The adjustment would not add significantly to the price of a new car and would open up the field to all the competitors attempting to replace gasoline.

Let the best fuel win.

Building the Natural Gas Highway: The Journey of Thousands of Miles Begins in Newport Beach

California still is seen as the state that exports innovation, despite the fact that it has seen some tough economic times of late. In this context, I was pleased to see the recognition granted by the Orange County Register (Nov 6) to the Clean Energy Fuel Corporation, and its efforts to build the Natural Gas Highway. I was even more surprised to find out that the corporate offices were located near my own office. Clearly, the popularity of natural gas and its derivatives, ethanol and methanol, are on the uptake since the President’s State of the Union address indicating the nation’s economy and environment  would benefit if it weaned itself off oil and by implication gasoline. Even before Obama’s speech, there was a growing recognition among many Americans– including environmental and business leaders– that natural gas could become the core of a strategy aimed at reducing greenhouse gas (GHG) and other pollutants, lowering the costs of vehicular fuel, and reducing dependency on oil imports, thus providing funds for investment in the U.S. Clean Energy Fuels Corporation, located in Newport Beach, is making it easier for consumers to access natural gas for their vehicles. According to the story in the Register, it has invested more than $300 million in the last two years on natural gas fuel stations across the nation. Most of the more than 400 stations that they have developed and  offer only compressed natural gas (CNG), a fuel that works better for comparatively short trips ( e.g. buses, taxis, garbage trucks, short hall trucks, local consumers ). Current and future placement of stations will increasingly offer liquid natural gas (LNG). LNG works better than CNG for long distance trips. Are the leaders of the Clean Energy Fuel Corporation nuts?  Maybe they are…but I don’t believe so.  While, the Corporation has yet to turn a profit (apparently after 15 or 16 years), since going public in 2007, their market value is now more than 1 billion dollars. Their phones are ringing. Large retailing companies relying on trucks, long distance trucking companies, bus manufacturers, taxis and bus companies seem to be gravitating toward use of cheaper natural gas as a fuel. But these users and potential users need assurances that natural gas fuel stations will be reasonably accessible. Clean Energy Fuel aims to provide such assurances. Many respected financial analysts believe that the Clean Energy Fuel Corporation is on the cusp of and will benefit financially from the increased acceptance and growth of alternative transportation fuels, particularly natural gas. Assuming both the sizable price gap between oil and natural gas remains and the corresponding price gap between natural gas fuel and gasoline as well as between natural gas and diesel fuel stays relatively large; Clean Energy Fuel Corporation’s future looks bright. Yes, it will have rivals. Shell Oil, according to the Register article, apparently is going to start selling LNG at existing truck stops. Soundings that I have picked up from natural gas leaders, CEOS of businesses dependent on trucking and diverse investors suggest an evolving interest in developing both CNG and LNG fuel stations and the Natural Gas Highway. In this context, 22 states, under the bipartisan leadership of Governor John Hickenlooper (D) of Colorado and Governor Mary Fallin (R) of Oklahoma, have initiated a collaborative project to buy CNG outfitted cars from Detroit to replace old state vehicles, when their time passes. Detroit in turn has promised to develop a less expensive CNG vehicle for the participating states which could ultimately benefit consumers. Given recent projections of the market for natural gas fuel by government and reputable private and nonprofit groups and increased advocacy for alternative fuels by a coalition of environmental, nonprofit and business groups, I wouldn’t bet against Clean Energy Fuel’s future health. My hope, however, is that it and, indeed, its competitors add room for natural gas derivatives such as ethanol and methanol in their planned natural gas stations.  Apart from generating use by owners of flex fuel cars now in existence, their agreement to do so would encourage (the relatively inexpensive and easy) conversion of existing vehicles to flex fuel vehicles. Significantly, EPA has certified the use of E10 in all vehicles, E15 in vehicles after 2001 and E85 in approved flex fuel vehicles. Hopefully, EPA will soon certify methanol as well as approve an expanded list of conversion kits for existing older vehicles. These approvals are possible, if not probable, given the environmental, economic and consumer benefits of alternative fuels and the evolving politics of fuel. Allowing oil companies to sustain the very restrictive rules now governing the vehicular fuel market will continue to prop up America’s dependency on imported oil as well as support relatively high fuel costs and increased environmental degradation.   President and CEO Andrew Littlefair of Clean Energy Fuel indicated, “With cheaper, abundant fuel, a network of stations, [and] redesigned engines …the time for natural gas transportation has arrived.” I would add, the time for natural gas based ethanol and methanol has also arrived. I commend Clean Energy Fuel for its initiative in developing the Natural Gas Highway. The Company, borrowing from President John Kennedy, has begun an important journey of thousands of miles in Newport Beach. Contrary to (and paraphrasing) the poet Robert Frost, hopefully the road they are building will be very well travelled.  Maybe a couple of leisurely  lunches near the ocean in beautiful Newport Beach could convince my colleagues at Clean Energy Fuel  to consider working with producers of natural gas based ethanol and methanol as well as interested states and localities to  extend  the Natural Gas Highway to ethanol and methanol. It would be good for traffic and their bottom line, good for development of related commercial activities and, most important, good for America

If Mother Jones and the Wall Street Journal can agree on this

When Nobel Laureate George Olah wrote his Wall Street Journal op ed recently announcing a new process that can turn coal exhausts into methanol, it reverberated all the way across the political spectrum and into Mother Jones.

 “Can Methanol Save Us All?” says the headline of a story on MJ, written by political blogger Kevin Drum. Although loath to admit he had    been reading the pages of capitalism’s largest broadsheet (he blamed the government shutdown), Drum admitted that he was intrigued. “George Olah and Chris Cox suggest that instead of venting carbon dioxide into the atmosphere, where it causes global warming, we should use it to create methanol,” he wrote.

Olah has been writing about a “methanol economy” for a long time, and he skips over a few issues in this op-ed.  One in particular is cost: it takes electricity to catalyze CO2 and hydrogen into methanol, and it’s not clear how cheap it is to manufacture methanol in places that don’t have abundant, cheap geothermal energy – in other words, most places that aren’t Iceland. There are also some practical issues related to energy density and corrosiveness in existing engines and pipelines. Still, it’s long been an intriguing idea, since in theory it would allow you to use renewable energy like wind or solar to power a facility that creates a liquid fuel that can be used for transportation. You still produce CO2 when you eventually burn that methanol in your car, of course, but the lifecycle production of CO2 would probably b less than it is with conventional fuels.

There are a few things we can cite here to set Drum’s mind at ease. First, methanol made from natural gas is already cost competitive. We don’t have to speculate. There is a sizable industry manufacturing methanol for industrial use from natural gas where it has sold for years at under $1.50 a gallon. That’s a $2.40-per-gallon mileage equivalent for gasoline (before further gains from methanol’s higher octane), making it at least 30 percent cheaper from what you’re now buying at the pump.

Of course Drum is referring here to Olah’s proposal to manufacture methanol by synthesizing hydrogen and carbon exhausts. This would be a more expensive process. But if it ever happened, the utilities would undoubtedly pay the processors to take the carbon dioxide off their hands, since it would allow them to go on operating their coal plants and using all that cheap black stuff coming out of Wyoming and West Virginia. It’s hard right now to factor up the costs but suffice to say, you would not be limited to geothermal from Iceland to make it happen.

As far as the corrosion issues are concerned, Drum can rest assured as well. It is true that methanol corrodes certain elastomers in current engines. They will have to be replaced with o-rings that can be bought at Office Depot for 50 cents. Any mechanic can perform the procedure for less than $200. Modifying current gasoline engines at the factory to burn methanol is also a surpassingly simple procedure – as opposed to altering an engine to burn liquid natural gas, compressed natural gas or hydrogen, which all require an entirely different assembly costing up to an additional $10,000.

The real rub mentioned by Drum, however, is the implication that if methanol can’t be shown to reduce carbon dioxide emissions in the atmosphere, then there isn’t any sense in doing it. There’s a slight divergence of purpose here that isn’t always clear to people who can agree we ought to be looking for alternative fuels to replace gasoline.

For some people the issue is energy dependence and reducing the unconscionable $400 billion we spend every year on imports. As the United States Energy Security Council pointed out in a recent paper, even though we have reduced imports to only 36 percent of consumption, we are still paying the same amount for oil because OPEC functions as an oligopoly and can limit supplies. As the report concluded, “It’s not the black stuff that we import from the Persian Gulf, it’s the price.”

For other people, however, the amount of money we’re spending on foreign oil – and the international vulnerabilities it creates – is not the issue. The only thing that matters to them is how much carbon dioxide we’re putting into the atmosphere. Global warming is such an overriding concern that it supersedes everything else.

This was made clear in a recent article in Yale Environment 360 by John DeCicco, professor at the University of Michigan’s School of Natural Resources and Environment and former senior fellow for automotive strategies at the Environmental Defense Fund, entitled “Why Pushing Alternative Fuels Makes for Bad Public Policy.”

The article argued against all forms of alternatives – ethanol, compressed natural gas, hydrogen and electric vehicles – on the grounds that none of them will do anything to reduce carbon emissions. “In the case of electric vehicles, an upstream focus means cutting CO2 emissions from power plants,” wrote DeCicco.

Without low-carbon power generation, EVs will have little lasting value. Similarly, for biofuels such as ethanol, any potential climate benefit is entirely upstream on land where feedstocks are grown. Biofuels have no benefit downstream, where used as motor fuels, because their tailpipe CO2 emissions differ only trivially from those of gasoline.

Instead, DeCicco argued that environmentally conscious individuals should concentrate on cleaning up power plants while support for alternative fuels should be limited to research and development.

By the time the power sector is clean enough and battery costs fall enough for EVs to cut carbon at a significant scale, self-driving cars and wireless charging will probably render today’s electric vehicle technologies obsolete. Accelerating power sector cleanup is far more important than plugging in the car fleet.

All this short-changes the clear advantages that can come from reducing our huge trade deficit and replacing oil with homegrown natural gas. The less money we spend on imports, the more we will have for making environmental improvements and investing in complex technology such as carbon capture that can reduce carbon emissions.

In addition, DeCicco may be being too pessimistic about alternative fuels’ potential for reducing carbon emissions. As The New York Times reported in a recent story about natural gas cars, “According to the Energy Department’s website, natural gas vehicles have smaller carbon footprints than gasoline or diesel automobiles, even when taking into account the natural gas production process, which releases carbon-rich methane into the atmosphere. Mercedes-Benz says its E200, which can run on either gasoline or natural gas, emits 20 percent less carbon on compressed natural gas than it does on gasoline.” Besides, if the source of emissions can be switched from a million tailpipes to one power plant, it’s a lot easier to apply new technology.

Mother Jones and The Wall Street Journal have much more in common than they may realize. One way or another, it would benefit everyone if we could reduce our dependency on foreign oil.

 

And that’s the way it is or isn’t — stable oil and gas markets

“And that’s the way it is” was used by my favorite news anchor, Walter Cronkite, to sign off on his highly respected network news show. And that’s the way the content he generally delivered generally was — clear, factual, helpful. I have tried to apply Cronkitism to today’s media analyses and commentary on oil production and oil prices. The new assumed “way it is” regrettably sometimes seems like the way the journalist or his boss — whether print, TV or cable — wants it to be or hopes it will be. Frequently, partial sets of facts are marshaled to ostensibly determine clear cause and effect relationships but end up confusing issues and generating questions as to the author or speakers mastery of content and conclusions.

What’s a Cronkitist to do? I often look to The New York Times for the wisdom grail. Generally, it works. But, I must confess that a recent piece in the Times by outstanding journalist, Clifford Kraus, titled “Is Stability the New Normal?” Oct. 9 bothered me. I found its thesis that a new stability has arrived with respect to oil prices and by implication gas prices at the pump a bit too simple.

The author indicates that “predictions about oil and gas prices are precarious when there are so many political and security hazards. But it is likely that the world has already entered a period of relatively predictable crude prices…there are reasons to believe the inevitable tensions in oil-producing countries will be manageable over at least the next few years, because the world now has sturdier shock absorbers than at any time over at least the past decade.”

What are these absorbers? First, more oil production in the U.S., Canada, Iraq and Saudi Arabia, to balance the loss of exports from countries like Iran, Libya and, I assume, Venezuela and possibly Nigeria. Second, the continued spread of oil shale development throughout the world, including many non-Middle East or OPEC countries. Third, increased auto efficiency, conservation and lower demand for gas in the U.S. Finally, near the end of the article and not really seemingly central to the author’s stability argument natural gas becomes in part a hypothetical “if.” He notes that American demand for gasoline could drop below a half a billion barrels a day from already below peak consumption, if natural cheap gas replaces more oil as a transportation fuel. (At least he mentioned natural gas as a transportation fuel. Most media reports fail to tie natural gas to transportation) break open the champagne! Nirvana is near! Michael Lynch, a senior official at Strategic Energy & Economic Research Inc., is quoted in the article, saying, “Stable oil prices could reduce future inflation rates and particularly curb transportation costs, helping to steady prices of food and construction materials that travel long distances…Lower inflation can also help reduce interest rates. By reducing uncertainty, investor and consumer confidence should both be increased, boosting higher spending and investment and thus economic growth.”

In the words of Oscar Hammerstein II, I want to be a cockeyed optimist…but something tells me to be at least a bit wary of a too-good-to-be-true scenario, one premised on a historically new relatively high price of oil per barrel (bbl.), just under $100 (the price is now about $105) and gas prices likely only modestly lower than they are now (the U.S. average is close to $3.50 a gallon)

So why be wary and worry?

1. The Times accepts the rapid significant growth in oil shale development and production too easily. Maybe they are right! Perhaps the oil shale train has left the station. But the growth of environmental opposition, particularly opposition to fracking, will likely slow it down until regulations perceived as reasonable by the industry and environmentalists are put in the books. Further, the often very early large expectations with respect to new pools of oil in places like the Monterey Shale, featured in media releases, have not panned out after later sophisticated analyses. Finally, the price of hard to get at oil may come in so high as to limit producer enthusiasm for new drilling.

2. The Times correctly suggests that the relationship between oil prices and gasoline costs may be less than thought conventionally. Lower oil costs in the U.S. do not necessarily trigger lower gasoline costs, and higher gasoline costs are not necessarily the result of higher oil costs per barrel

The Times credits the recent visible break in the relationship primarily to an abundance of oil linked to oil shale production in the U.S. and in many other countries and to falling demand for oil throughout the world, including China, to the lack of economic growth and higher efficiency of vehicles.

It’s more complicated. For example, price setting is affected in a major way by speculation in the financial community, and by oil producers and refiners who govern production and distribution availability. Respected analysts and political leaders suggest that companies base their decisions concerning price at least in part on market and profit assumptions. Fair. But, oil’s major derivative gasoline does not function in a free market, rather, it is a market controlled by oil companies. There is little competition from alternative fuels. Unfair and inefficient.

3. The quest for oil independence and the related justification for drilling lead the media to suggest and the public to believe that there is an equivalency between increased production of oil and closing the gap between what we consume and produce as a nation. Yes, we have reduced the gap — both demands have fallen and production has increased. But it is still around 6.0 to 6.5 million barrels per day. Yet, we continue to export nearly half of what we produce every day or nearly 4 million barrels. Our good friends, China and Venezuela, get 4% and 3% respectively. Companies may sing “God Bless America” while extracting, refining, exporting and importing oil, but theologically based patriotism doesn’t govern the oil market. Sorry, but global prices and profits have precedence. Remember the adage — “the business of business is business.”

4. A recently released Fuel Freedom Foundation paper suggests that energy independence is a misnomer. Based on its review of EIA data and projections through 2035, negative energy balances exist that never drop below a $300 billion deficit. If EIA data is to be believed, energy independence, Saudi America and control of our energy future are developments that will not occur anytime soon.

I am disappointed that natural gas as an alternative fuel seems more like an afterthought coming at the end of Kraus’s long piece. I am glad the author mentioned it but it seems at least a bit forced. The commentary was limited to natural gas and not its derivatives, ethanol and methanol, or, for that matter, other alternative fuels. Put another way, it seemed to assume a still very restricted fuel market. Opening up consumer choices at the pump is a key factor in stabilizing oil and gas markets. It also is a key factor achieving reduced prices at the pump for low and moderate income families; the former spending from 14-17% of their limited income on gasoline.