Posts

Resources for the future and an alternative vehicle and fuel pathway

I have been a fan of Resources for the Future (RFF) since my early days in Washington many years ago. While the organization’s reports won’t keep you awake at night nor can they easily convert into a Bollywood movie, they generally provide sound nonpartisan analyses of resource and environmental issues. In this context, the Fuel Freedom Foundation (FFF) retained RFF to independently study the potential economic, environmental and national security gains from replacing a portion of domestic gasoline use in the light-duty fleet with various natural gas-based fuels such as ethanol or methanol.

The request reflected the relatively large price differential between the growing supply of natural gas and gasoline and FFF’s assumption that natural gas-based fuels (ethanol and methanol) could not only offer the U.S. security benefits, they would be cheaper and cleaner than gasoline. If FFF’s assumption was right, public and private sector strategies to encourage the conversion of older vehicles to FFVs and to increase the production of new FFV vehicles in Detroit would seemingly be in order. Similarly, finding financially feasible ways to produce, develop, distribute and successfully market natural gas-based alcohol fuels would appear quite sound.

RFF’s study was completed last September and is available online.

I have read the document many times. It is compelling because it honestly portrays gaps in information and uncertainties concerning public policy and regulation, technology, geography, price trends, competition, and availability as well as access to natural gas-based fuel. Indeed, embedded in the report is the fact that policymaking in public, nonprofit or private sectors or predictions concerning consumer behavior is never perfect. As complexity increases, decisions often require reliance on perfectibility over time, rather than perfection in the present time.

Apart from RFF’s marshalling of available, relevant data and its related analysis, the study’s conclusions are supportive of leadership groups and leaders who seek an “alternative path” in support of the use of natural gas-based fuels and the conversion of older cars to flex-fuel vehicles.

What RFF concluded is that the only replacement fuel currently available to the more than ten million FFV E85-capable vehicles “does not have a cost advantage at the pump over conventional gasoline.” But assuming companies like Coskata, Inc. and Celanese are able to deliver on their financial modeling, live tests and price predictions concerning the production and distribution of natural gas-based ethanol, owners of FFVs, including owners of new and older converted vehicles could see cost benefits near $1 per GGE (gasoline gallon equivalent) in the very near future.

This is no small benefit. It will be particularly important to low and moderate-income folks, permitting them more choices when it comes to jobs, housing and other basic needs. It will also reduce the strain caused by reduced economic and income growth on middle class households. RFF also indicates, with somewhat less certainty as to how much, that there will likely be environmental benefits.

Making this new replacement fuel path viable will require the EPA to lower the costs of certification of kits that help convert older cars to FFVs, and to sanction relatively simple software adjustments, particularly for newer FFVs and their twins (not the human kind but automobiles whose engines reflect FFF characteristics. This path will also need the EPA and advocates of natural gas-based ethanol to work together to develop a vehicle-testing procedure for older cars that is both cost efficient, sound and hopefully, relatively quickly. Finally, it will necessitate a fuel market that reduces, if not eliminates, the almost monopolistic conditions generally imposed by oil companies and often supported, at least implicitly, by government policies and regulations.

Consumers, clearly, would benefit from more competition at the pump and from more pumps devoted to replacement fuels. Auguste Comte, the great 19th century philosopher and founder of positivism, never saw a gasoline station, but his simple motto, “Love as a principle [need for increased natural gas-based flex fuels and need for flex-fuel cars], the order as a foundation [development of policies and infrastructure for natural gas-based fuels and increased FFVs] and progress as a goal [extend consumer choice]” nicely frames RFF’s narrative. In turn, RFF’s study, while recognizing the value of renewable fuels, supports an alternative, natural gas-based replacement fuel as well as a vehicular pathway to help achieve national, regional and local economic, social welfare and environmental benefits. It’s near July Fourth. Let’s move toward freer increased choices among fuels and increased vehicular capacity to use them.

Japan bets big on hydrogen fuel cells

Remember when Japan’s Ministry of Economy, Trade and Industry (METI) used to sit atop the Japanese industrial complex, steering it like some giant Godzilla hovering over the entire world?

Those were the days when Japan’s government-industry partnership was supposed to represent the future, when Michael Crichton wrote a novel about how Japan would soon devour America, when pundits and scholars were warning that we had better do the same if we hoped to survive – before, that is, the whole thing collapsed and Japan went into a 20-year funk from which it has never really recovered.

Well those days may be returning in one small part as METI prepares to direct at least half the Japanese auto industry into the production of hydrogen-powered fuel-cell cars.

“Japanese Government Bets the Farm on Fuel Cell Vehicles” ran one headline earlier this month and indeed there’s plenty at stake for everyone. The tip-off came at the end of May when Jim Lentz, CEO of Toyota’s North American operations, told Automotive News that electric vehicles are only “short-range vehicles that take you that extra mile…But for long-range travel, we feel there are better alternatives, such as hybrids and plug-in hybrids, and, tomorrow, fuel cells.” The target here, of course, is Tesla, where Elon Musk appears to be making the first inroads against gasoline-powered vehicles with his $35,000 Model E, aimed at the average car buyer. Toyota was originally in on that deal and was scheduled to supply the batteries until it pulled out this spring, ceding the job to Panasonic.

But all that was only a preview of what was to come. In early June, METI announced it would orchestrate a government-private initiative to help Toyota and Honda market fuel-cell vehicles in Japan and then across the globe. Of course that leaves out the other half of Japan’s auto industry, Nissan and Mitsubishi, pursuing their version of the EV, but maybe the Japanese are learning to hedge their bets.

The hydrogen initiative will put the fuel-cell vehicle front-and-center in the race to transition to other forms of propulsion and reduce the world’s dependence on OPEC oil. Actually, hydrogen cars have been in the offering for more than twenty years. In the 1990s soft-energy guru Amory Lovins put forth his Hypercar, a carbon-fiber vehicle powered by hydrogen fuel cells. In 2005, California Gov. Arnold Schwarzenegger inaugurated the “Hydrogen Highway,” a proposed network of hydrogen filling stations that was supposed to blanket the Golden State. Unfortunately, only ten have been built so far, and there are still no more than a handful of FCVs (hydrogen fuel cell vehicles) on the road. Mercedes, BMW, Audi and VW all have small lines but none are marketed very aggressively in the United States.

This time, however, there may be a serious breakthrough. After all, Toyota, Honda and METI are not just in the business of putting out press releases. Toyota will begin production of its first mass-market model in December and Honda will follow with a 5-passenger sedan next year. Prices will start in the stratosphere — close to $100,000 — but both companies are hoping to bring them down to $30,000 by the 2020s. Meanwhile, GM is making noises about a fuel-cell model in 2016 and South Korea’s Hyundai is already unloading its hydrogen-powered Tucson on the docks of California.

What will METI’s role be? The supervising government ministry promises to relax safety standards, allowing on-board storage of hydrogen at 825 atmospheres instead of the current 750. This will increase the car’s range by 20 percent and bring it into the 350-mile territory of the internal combustion engine. Like the ICE, hydrogen cars can “gas up” in minutes, giving them a huge leg up on EVs, which can take anywhere from 20 minutes with superchargers to eight hours with household plugs. METI has also promised to loosen import controls so that foreign manufacturers such as Mercedes-Benz can find their way into Japan. And, of course, it will seek reciprocal agreements so Toyota and Honda can market their models across the globe.

So will the one-two punch of government-and-industry-working-together be able to break the ice for hydrogen vehicles? California seems to be a particularly ripe market. Toyota is already the best-selling car in the state and the California Energy Commission is promising to expand the Hydrogen Highway to 70 stations by 2016. Still, there will be stiff competition from Elon Musk if and when his proposed Gigafactory starts turning out batteries by the millions. Partisans of EVs and fuel-cell vehicles are already taking sides.

In the end, however, the most likely winners will be consumers who will now have a legitimate choice between hydrogen vehicles and EVs. It may be a decade or more before either of these technologies makes a significant dent in our oil consumption, but in the end it will be foreign oil providers that will be feeling the pain.

Shakespeare and Julia Child on monopolies, competition and alternative fuels

You must remember the famous community activist who once asked, “To be, or not to be, that is the policy and behavior question; whether ‘tis nobler in the mind to suffer the slings and arrows of outrageously high, constantly shifting gasoline prices or to take arms against a sea of troubles generated by monopolistic fuel markets and open them up and end them.” I’m paraphrasing, of course.

Unfortunately, Shakespeare, now that we need him, is no longer available. But his question, articulated by his political friend Hamlet, still needs to be answered. I suggest we respond to his query in the context of another question: Is competition in the market for vehicular fuel a public good and in the public interest? Ah ha, you ask, why must we ask this question? Don’t we live in a capitalist or quasi-capitalist nation? Gosh, ever since we all were kids, were we not brought up on the wisdom of free markets and their ostensible link to freedom and democracy, a trifecta holy grail?

Sure we were! But the presented wisdom apparently didn’t mean all markets, and most important for this article, the market where most of us purchase fuel. By and large, the market for fuel is limited to a single, generally similar, primary product — gasoline. Competition, when it exists, generates from relatively small price differences, more often than not. Overblown value propositions in advertising concerning engine performance benefits from brand X or Y notwithstanding.

Consumers who, many times, assiduously read the papers or go online to find out where different brands of tires are cheapest or travel miles to visit dealers to get a perceived “good deal” on a car are frequently constrained to their neighborhood gas stations or the stations located near the nearest shopping center or big box store. While price may be a key factor in driving their decision as to which station will fill up their tank, absence of diverse fuel alternatives results in a relatively narrow band of prices per gallon and a competitive floor on consumer savings and costs.

Opening up gas markets will be tough. The oil industry controls or strongly influences over 40 percent of the stations and holds a big, profitable stick concerning what can be sold and how it can be sold at its franchised facilities. Prices are set low enough to scare independents into selecting less-than-favorable locations, or pricey enough to give them some room to keep their own costs relatively high.

To date, state pilot or demonstration programs concerning alternative fuels like ethanol and methanol have had mixed results. Why? Their costs of production and their environmental/GHG costs are lower than gasoline. Are we Americans just dumb? No. Initiatives to date have had to surmount problems including: consumer access to fuel stations with flex-fuel pumps (their costs range from $50,000 to over $100,000); a growing but still relatively small percentage of flex fuel autos compared to the total number of vehicles; the lack of consumer information concerning their own flex-fuel vehicle’s ability to use ethanol; the fear generated by some interest groups often related to the oil industry about the impact of alternative fuels on engines; the seeming ability of the oil industry to manage local prices; and the decisions by supply chain participants, particularly retailers to raise alternative fuel prices to capture immediate profits (reducing their intermediate and long-term ability — as the new kid on the block — to compete with gasoline.)

Evidence from Brazil suggests that demand emanating from an educated public, combined with a commitment to increase the pool of alternative-fuel vehicles and readily accessible fuel stations with ethanol pumps will cause a reduction in gasoline prices. Juliano J. Assunção, Joao Paulo Pessoa and Leonardo Rezende noted in a December 2013 London School of Economics publication, “Our estimates suggest that the model prediction is correct and that as the percentage of flex cars increase by 10%, ethanol and gasoline energy equivalent prices per liter fall by approximately 8 cents and 2 cents, respectively. Considering the volume of sales and size of the flex fuel fleet in 2007, a rough estimate suggests consumer savings to the order of 70 million Reais in the Rio de Janeiro state that year. Our estimates also show that the price gap as well as the price correlation between the two fuels has increased with the increased penetration of flex fuel cars.” Other studies have suggested similar positive impacts.

A U.S. recipe appears clear and consistent with America’s assumed belief in letting the market decide most resource allocation issues connected to the production of non-social welfare related goods and services. Ingredient one: Amend laws and regulations to encourage individual owners to convert older cars to flex-fuel automobiles; ingredient two: mix the resulting converted cars with newer flex-fuel vehicles to create a large flex-fuel pool; ingredient three: liberally sprinkle in enough information to inform consumers and potential-ethanol-supply-chain participants, including potential blenders and retailers, of the potential demand for ethanol as a fuel; ingredient four: add real, solid seasoning to the mix by fostering development, distribution and the sale of natural-gas-based ethanol to achieve significant increased environmental and cost benefits. Julia Child couldn’t build a better dish for the nation as it simultaneously tries to expand the viability of renewable fuels, and Shakespeare’s friend, Hamlet, would not need antidepressants.

Star light, star bright: Wishing for a cleaner, less-expensive fuel

Star light, star bright, I wish I may, I wish I might, have this wish I wish tonight… How many of you said these words on a starry night, particularly if you were with your best girl or boyfriend as a teenager? Or, as a loving parent, how many of you taught your child to say these words as part of your effort to build his or her vocabulary or memory…or just to instill their capacity to dream?

Now Kate Gordon, the, legitimately well respected, president of Next Generation, seems to have forgotten the difference between wishing, hoping, dreaming and reality. Her recent brief “expert” article in the Wall Street Journal departs from reasonable projection into fanciful wishes.

Gordon is correct that the “average car” on the U.S. road is about 11 years old and that their negative impact on GHG emissions and our health is significant. She is also correct in pointing to the large impact that high gas prices have on “our wallets,” (I would add) particularly for low and moderate-income households. Clearly, for the poor and near-poor families and for the economically fragile moderate-income households, present gas prices mean less of the basic necessities: modest job choices, good food, housing and healthcare.

Where Gordon and I part company is with her suggestion that an auto replacement initiative or what she calls an Enhanced Fleet Modernization programs would generate a visible, short-term impact and would likely be supported now, by assumedly the federal or state governments, in a significant way. (I should indicate that while I was head of the urban policy in the Carter administration, HUD senior officials thought about offering support by providing older cars to carless, low-income folks to permit them to secure job opportunities in the suburbs. How times have changed. The concern about GHG emissions and other pollutants emitted from older cars that run on gasoline are now seen as a real environmental problem.) The difficulty with Ms. Gordon’s proposal is number one, money and bureaucracy; number two, money and bureaucracy; and number three, money and bureaucracy. Even California, which she touts, has had mixed results with its replacement and incentives to replace older car programs. Clearly, exporting California’s experience to many other states, given economic and political constraints, would be difficult and would likely result annually in a relatively small impact on the nearly 300,000,000 cars in the U.S of which approximately 85-90 percent are over six years old.

Car replacement is a nice thought, but probably, at this time, an exotic one. If policymakers are seriously looking for a way for large numbers of owners of older cars to immediately reduce their vehicle’s negative effect on the environment, air quality and their own costs of fuel, there are better ways. While we wait and hope for the advent of vehicles that are ready to run on renewable fuels and that simultaneously meet the travel as well as budget needs and demands of most low, moderate and middle-income Americans, we should look at natural-gas-based ethanol as a fuel for newer flex fuel cars and for large numbers of older vehicles converted to flex-fuel vehicles.

Ethanol is not perfect as a fuel but it is better than gasoline. It emits fewer GHG emissions and other pollutants harmful to the nation’s quality of life. Recent regulations, like ones initiated by Colorado, that significantly reduce emissions from drilling now will likely make life cycle environmental evaluations of natural gas changed into ethanol a much better environmental deal. The process appears technologically feasible at a cost lower than the production costs of gasoline. If ethanol is allowed to compete with gasoline by oil companies on an even playing field — oil companies generally control who gets what and where at most “gas” stations — ethanol will be cheaper than gasoline for the consumer.

It is relatively inexpensive to convert older cars to flex-fuel vehicles — perhaps as little as $100 to $200. Finding a way through lessening the cost of certification to expand the number of conversion kits certified by the EPA and, or, where relevant, allowing recalibration of software and engines, would expand the benefit-cost ratio for many older cars. Star light, star bright, we can have the wish we wish tonight concerning a cleaner environment and lower consumer prices in a relatively short time, while we continue to push for electric vehicles and a whole range of renewable fuels to achieve prime-time performance for most Americans.

Let freedom ring: Oil companies, capitalism and fuel choice

It’s a free county, ain’t it? Americans have many choices that are denied to citizens of other less-fortunate nations. But we forget how many decisions are made for us, sometimes out of necessity, such as paying taxes; sometimes out of greed, such as the monopolistic actions of oil companies in denying many Americans the ability to purchase alcohol-based fuels at their corner gas station. Try it someday! On your way home from work, on your shopping trip to your friendly supermarket or on your way to see a movie at your favorite theater, make a stop for fuel at a gas station. Make sure to have some gasoline in your tank, because it likely will take you a lot of time to find a gas station that sells E85 or even E15.

Now, I went to Harvard Law School for four days, before I decided that there were too many lawyers around and memorizing case studies was not my forte. But Harvard provides significant value added, apart from being near Harvard Square and Boston. I was exposed to terms and content related to antitrust, restraint of trade, collusion and monopolies. Now, I didn’t stay long enough to know whether those concepts applied to oil companies that restrict consumer choices of alternative fuel. Probably not, because I am sure, by now, one of my Harvard colleagues would have filed a well-reimbursed case to break open the fuel market to options like ethanol, methanol and more. But whether legal or not, oil companies deserve their comeuppance for limiting many of us who, too often, are required to use more expensive, environmentally harmful gasoline, instead of existing, safe, alternative fuels.

How do they do this? Well, if you are a gas station owned or franchised by an oil company, your contract and rules related to behavior often prevent you from adding a pump or adding to an existing pump to sell E15 or E85. As relevant, since oil companies generally require the stations they own to buy fuel from them, and since they don’t sell E15 or E85, adding a pump would be akin to waiting for the hereafter (and acting on faith that you will get there).

Wait, there is more! Every now and then an oil company wants to publicly show it is a bit beneficent (for image purposes), but don’t hold your breath with respect to proof that image and reality are the same. Sure, you might find an alternative-fuel pump near the rear side of the garage proximate to the men’s room, or, if you are lucky, on the side of the station near the air pump. Most oil-company-owned stations and franchisees are generally precluded from putting an alternative-fuel pump under the covered island or space out front. They also face restrictions on advertising alternative fuels as an available product and oil-company pricing limits competition from alternative fuels.

Congress has refused to enact open fuels legislation, which would require oil companies to open up their gas stations to other fuels. Ongoing efforts by public and private sector advocates, as well as nonprofit groups, to encourage policies that would convert older cars to flex-fuel vehicles and to encourage Detroit to build more FFVs could well lead to a large consumer market for alternative fuels and generate a positive market reaction among independent gas companies and, perhaps, even some smart oil companies. While I have been wading through the pros and cons of allowing oil companies to increase exports to other nations, I do believe that if increased exports are in the nation’s future, they should be approved only if the oil companies agree to require their stations and franchises to offer alternative fuels in a primary space alongside gasoline. A bit of tat for tat is in the public interest. Let freedom ring for consumer! Let capitalism mean competition for gasoline and alternative fuels at your nearby gas station! Oh, I forgot, alternative fuel station!

Right, wrong and indifferent — the AAA, oil and alternative fuels

My favorite automobile service group — the AAA — has once again treaded without fear or trepidation into analysis. Remember earlier, when it suggested that E15 harms engines, based on what looked like an oil-industry-generated study? The AAA’s methodology was weak and its conclusions suspect, a judgment supported by the EPA’s response. According to the agency, AAA’s conclusions were erroneous and based on a limited sample. EPA’s own findings were generated from a relatively large sample of cars, indicating that E15 is safe for most engine types and reaffirmed the wisdom of its approval of E15 usage.

I was surprised to find an article in Oil Price by blogger Daniel Graeber, based to a large degree on comments from AAA’s Michael Green suggesting that the oil shale boom has prevented gas prices from going higher than they are now. Graeber approvingly quoted Green, who said, “Sadly, the days of cheap gasoline may never return for most American drivers despite the recent boom in North American crude oil production.” Assumedly, Green meant that the cost of drilling tight oil will remain high and the costs per barrel of oil will follow suit.

Green apparently went on to indicate that political leaders, particularly, members of Congress who argue for a drill-baby-drill policy, are wrong to link more wells to significant price relief for folks who find gas costs a real problem.

The AAA is right when it suggests that, despite the oil shale boom and signs of increasing demand in America, refineries are sending increased amounts of oil-based products overseas. Understandably, their patriotism doesn’t extend to accepting a lower price for oil in the U.S. when they can get higher prices overseas.

The article appears inconsistent, when at one point it mentions that crude oil inventories are running above average, and later blames current exports for low supplies and low supplies for preventing a drop in prices at the pumps.

Both are correct in indicating sales of oil products abroad probably do have an effect on costs-up to now probably marginal. Certainly, if Washington extends export privileges, increased sales of oil abroad may have a more significant impact on consumer costs. More relevant, however, concerning gasoline costs at the pump, will be economic recovery in the U.S., investor speculation and the oil sector’s ability to manage prices.

Cheap oil has been, recently, and likely will be in the future, a fantasy. The cost of oil per barrel has hovered at around $100 and upward for an extended period, and drilling in shale is relatively expensive. Continuous exogenous and existential (don’t you like those words — they create great passion and emotion) threats from the Middle East and Eastern Europe, also, will likely tilt oil prices upward in the near future.

I would commend the AAA, assumed by many to be the leading advocate for automobile owners in the nation, for grasping the fact that the behavior of producers is likely to lead to higher gas costs and create burdens, particularly for low and moderate-income groups. Now with this knowledge, shouldn’t the AAA argue for breaking oil’s near monopoly on fuel? If the AAA was really interested in helping vehicle owners lower their cost of fuel, it might take the lead in arguing for choice at the pump. Wouldn’t it be great if they really stood up for more open fuel markets as well as alcohol-based transitional fuels, such as ethanol and methanol? Competition at the pump from flex-fuel vehicles, combined with conversion of older vehicles to flex-fuel cars would, over time, mute increases in gas prices and, at the same, time generate environmental benefits for a better America. Support for alcohol-based fuels is consistent with support for renewable fuels, if one is concerned about the environment and GHG emissions. Let’s bring them on as fast as we can. But let’s acknowledge that renewable fuels are not really ready yet for prime time. They are too expensive for many Americans and their technical limitations, particularly concerning electric batteries, are not yet coincident with the desires of most Americans.

Rin Tin Tin, RINs and the price of ethanol

Is the son or daughter of Rin Tin Tin alive and well? For a while I thought he or she was, while catching up on my reading over the weekend. I kept reading articles about RINs (Renewable Identification Numbers), their possible impact on the ethanol market and relatively high ethanol prices, despite the apparent weakening of the ethanol market. There seemed to be RINs and more RINs on every page I turned! Because I hadn’t slept for two nights, I couldn’t really focus on the contents of the articles, but only on the dog Rin Tin Tin and his offspring. How many of you have done that? Come on, be honest. Don’t make me feel bad!

I felt guilty after it became obvious that my focus on Rin Tin Tin resulted from a tired brain and eyes. I am back to the complex world of RINs today. (I had a bit of sleep).

Okay, you ask, “What the hell are RINs?” They are sort of a pass at reflecting company fulfillment of government mandates concerning biofuels. For this article, think ethanol! They are issued at the point of ethanol production or the purchase of the fuel by companies. They are approved by the EPA. They reflect a credit that verifies that the required amount of ethanol has actually been blended into gasoline. Succinctly, the Renewable Fuel Legislation, now the law of the land, mandates that a Renewable Identification Number (RIN) must be attached to every produced or imported gallon of renewable fuel in the U.S. One more thing, RINs are separated from the batch of renewable fuel when it is blended with gasoline. This fact indicates compliance with the law and Renewable Volume Obligations (RVOs). Credits, at this juncture, can be used for trading purposes.

In 2012, before the EPA’s Nov. 2013 proposal to change RIN quotas and lower requirements for ethanol, the price of RINs was very volatile. Initially, they ranged around 1 to 10 cents a gallon. By spring of 2013, however, they were around $1.

Why the price increase and what does it bode for the price of ethanol in the future? Initially, the RINs were thought of as a way to encourage refiners to produce renewable fuels, like ethanol, and to “pay” for credits if they don’t “play” by  meeting fuel targets.

Part of the volatility and increase in costs of RINs, probably, has to do with speculation by banks and other financial institutions. Thomas D. O’Malley, chairman of PBF Energy, indicated in a recent New York Times article that financial institutions “helped transform an environmental program into a profit machine…These things were designed to monitor the inclusion of ethanol in the gasoline pool…They weren’t designed to become a speculative item. For the life of me, I can’t see the justification for it.” Interviews with members of the financial community, conducted by the New York Times, seem to suggest agreement with O’Malley.

According to the Times, speculation in RINs “could have consequences for consumers. In the end, energy analysts say, the outcome will be felt at the gas pumps — as the higher cost of the ethanol credits get tacked onto the price of a gallon of gasoline.” The Times reports that the “credits, which cost 7 cents each in January [2013], peaked at $1.43 in July, and [were] trading for 60 cents” in September. Jordan Godwin in the Barrel Blog indicated that like RINs in 2013, ethanol prices in 2014 are downright wacky. “In a matter of less than two months, ethanol prices went from six-month lows to eight-year highs.” Godwin and others blame delayed returning train cars during the winter and constraints on supply and production. I would add speculation by Wall Street and uncertainty as to the impact and longevity of EPA’s new regulations concerning the reduced mandates for ethanol and other biofuels. It’s a dilemma for proponents of alternative fuels. Less speculation regarding trading, sustained predictable production and refinement of the distribution system, (along with avoidance by some retailers and blenders to price ethanol well over costs) would facilitate more competition with gasoline at the pump. More predictable competition and larger sales at the pump of E15 and E85 would generate more private-sector fixes to the ethanol supply chain as well as likely stabilize prices and, over time, lower them. In light of ethanol’s benefits to the nation, wise folks might be asked to find policies and stimulate market behavior that permit the American people to have it both ways.

Of myths, oil companies and a competitive fuel market

I do not wish to join the intense dialogue concerning whether or not the government should allow exports of crude oil. Others are already doing a good job of confusing and obscuring the pros and cons of selling increased amounts of America’s growing oil resources overseas.

What I do want to do is just focus on the logic of one of the oil industry’s major arguments for extending the permitting of exports — again, not on the wisdom of exporting policy. Permit me to do so in the context of the industry’s long-standing argument concerning the pricing of gasoline to U.S. consumers. The argument is that more oil drilling in the U.S. will lower the price of gas and put America on the path to oil “independence.”

In somewhat of circuitous manner, oil companies are using the opposite of their domestic advocacy for “drill, baby, drill” policy as a way to keep prices lower at the pump. Their yin is that producing more oil in the U.S. and sending significant amounts overseas, combined with declining vehicular fuel demand, will lower gas prices. Economist Adam Smith would applaud the simplicity if he were alive and well. Their yang presents a bit more complicated set of “ifs.” That is, the industry presumes that fulfillment of the yen (excuse another pun) to export will result in more U.S. oil being drilled because of increased world demand generated by the assumed ability of the U.S. to produce oil at less costs than the world price for oil. It will also help foster infrastructure development in the U.S. to break up current log jams concerning oil transportation. Finally, it will facilitate more efficient refineries, allowing them to specialize in different types of oil. The yin and yang will result in (marginally) lower prices of gasoline — so goes the rhetoric and oil-industry-paid-for studies.

Paraphrasing Dr. Pangloss in “Candide,” the oil companies hope for the “best of all possible worlds.” But, before Americans run out and buy stock, note the price of gasoline does not directly reflect oil production volume. Indeed, gas prices, despite increased supplies, have gyrated significantly and now hover nationally over $4 a gallon. Generally, oil and gas prices relate to international prices, tension in the Middle East and investor and banker speculation — not always or directly domestic costs. Stockholders and executives of oil companies function not on patriotism but on profit and to the extent that the law permits, they will sell overseas to get the best price — in effect, the best dollar over payment for a barrel of oil. Consumers, I suspect, are rarely a significant part of their opportunity costing.

Unfortunately, lack of strong empirical evidence tempers the company’s argument that increased world demand will stimulate good things like refinery efficiency and log-jam-ending infrastructure. Maybe if the price per barrel is right (clearly, higher than it is now) and seems predictable for more than a small period of time, refinery and infrastructure developments will be positive. But, the costs to the consumer, in this context, will be higher. It will also be higher because shale oil is tight oil and more risky and costly to drill.

Oil independence is a myth suggested by oil industry and a non-analytical media. Certainly, the oil boom and less vehicular demand have generated less imports and less dependency. But we still buy nearly 300 billion dollars’ worth of oil every year to respond to need and we still produce far less than demand.

Somewhere in the dark labyrinth of each major oil company is a pumped-up (another pun), never-used, secret justification for franchise agreements impeding the sale of alternative fuels in their retail outlets. To alleviate guilt, it may go something like this: “Monopolies at the pump will allow us to make larger profits. You know we will someday soon want to give back some of the profits to consumers by lowering the price of gasoline.” If you believe this still-secret beneficence, let me sell you the Brooklyn Bridge.

There is another way to steady the gasoline market and lower consumer costs. Inexpensive conversions to allow older vehicles to use safe, cheaper and environmentally better alternative fuels (as opposed to gasoline), combined with expanded use by flex-fuel owners of alternative fuels, would add competition to the fuel market and likely reduce prices for consumers. Natural-gas-based ethanol is on the horizon and methanol, once the EPA approves, will follow, hopefully shortly thereafter. Electric cars, once costs are lower and distance on single charges is higher, will be a welcome addition to the competitive mix.

Are We Entering the Age of Batteries?

Last week in Houston, Secretary of Energy Dr. Ernest Moniz told CERA Conference attendees that storage batteries may be the next big energy breakthrough.  “It’s pretty dramatic,” he said.  “The research is moving very, very fast.”

Indeed, if you’re looking for “energy breakthroughs” on the Internet these days, most of the hits are likely to turn up something new about “flow batteries,” “ten times the storage capacity,” or some new cathode material that dramatically improves the performance of lithium-ion batteries.

So where do we stand in this energy revolution now, and what are the possibilities that any of these breakthroughs are likely to lead to real improvements in our attempts to wean ourselves off traditional energy resources like fossil fuels?

A good place to start is “Next Generation Electrical Energy Storage: Beyond Lithium Ion Batteries,” a panel put together for last February’s meeting of the American Association for the Advancement of Science in Chicago.  Three experts – Haresh Kamath; of the Electric Power Research Institute, Mark Mathias; of General Motors, and Jeff Chamberlain; of Argonne National Laboratory – discussed the latest developments in the industry.

All three panelists agreed that battery research is progressing along two separate tracks:

1) lithium-ion batteries that power most consumer electronic devices are now being scaled up for electric vehicles; and

2) larger and more durable conventional batteries for the storage of grid-scale electricity.

Despite whatever hopes Elon Musk may have that his new “Gigafactory” will be able to address both of these markets at the same time, that does not seem likely.  “Lithium-ion just doesn’t have the durability that we’re looking for in the utility industry,” Kamath of EPRI told the audience.  He continued:

I was doing cable research one time and we had a model for a product that would last 40 years.  The utilities looked at it and said, `Could you try for 60 or 80?’  The utilities are looking for things that last a long, long time.’ said Kamath.

“There’s a lot of experimenting going on,” Kamath added, “but everything that is on the grid right now is a demonstration.  No one has yet come up with a sustainable business model.”

With electric cars, on the other hand, the challenge will be in equipping batteries with enough energy density so that their weight does not load down the vehicle to the point of being counterproductive.  “The standard measure is that you need 100 kilowatt-hours of power to drive a mid-sized vehicle 300 miles,” said Mathias, who works at GM’s electrical storage research and development project.  He explained.

If you get up in the density range of 350 Watt-hours per kilogram, you can make it.  But current batteries are operating at around 150 Wh/kg, which gives them a range of 125 miles.  The best we can project is that they can achieve 225 Watt-hours per liter, which still leaves them short. (Mathias).

“Fuel cells operating on hydrogen actually do a much better job at this point,” he added.  “They can now get us up in the 300-mile range.  We regard them as electric vehicles as well.  It’s just that you generate the electricity on board.”

Then there’s the matter of cost.  Capital costs for lithium-ion batteries quickly rise into the $20,000 range.  Fuel cells cost only $6,000 and gas-electric hybrids, $4,000.  “The good news for EVs is that fuel costs are only about one-third that of gasoline,” said Mathias. “Over a span of 100,000 miles, a gasoline engine will cost you $10,000 in fuel.  A hydrogen fuel cell vehicle will cost only $6,000 and a pure EV, $3,333.”  Still, that’s a long time to wait and a long way from complete cost recovery.

Refueling time is also a bit of a problem.  “When you pump gasoline into your car, you’re actually adding range at a rate of 150 miles per minute,” said Mathias.  He went on to say:

With hydrogen fuel, it’s 100 miles-per-minute, which is acceptable. But even with the new 120-kW superchargers, you can only add mileage to an EV at a rate of 6 miles per minute.  If you take a long- distance trip, you’re going to spend 20 percent of your time       recharging. (Mathias)

Overall, Mathias was not overly optimistic about further improvements.  “There’s not much on the horizon,” he concluded.  He was more optimistic about hydrogen cars.

Chamberlain, of Argonne National Laboratory, is part of a $120 million program funded by the Department of Energy that is aimed at developing batteries with five times the current energy density at 1/5th the cost within five years.  “That’s a very ambitious goal,” he told the audience, “but we feel that’s what’s needed to transform the transportation sector.”  A long chain of national and university laboratories are involved in the project.  Of course, government goals and mandates are just that – projections that may or may not come true.  Steve Jobs was good at inspiring his cast to pursue seemingly impossible goals but the federal government does not always have the same success.

So far, the research has involved searching the periodic table for more candidates.  “We’re not sure what we’re going to come up with,” said Chamberlain, elaborating:

We’ve decided that capacitors will never help us reach our goal.  The charge dissipates too quickly.  So we’re exploring other materials.  It may involve a metallic anode and a suspended-particle cathode.  If you move to magnesium or aluminum, you’re releasing two electrons  instead of one.  But zinc-air and lithium-air doesn’t get you there               because they simply don’t have the power.”  (Chamberlain)

Chamberlain said that a lot is already known about lithium-ion.  “We may be able to get two times what we have now.”  He had to agree with Mathias that no other significant developments are on the horizon right now.

Mathias warned against new reports that are constantly announcing progress at the material level.  “We often realize right away that they’re not going to work,” he said.  “It’s not worth the manufacturing dollars.

Overall, the takeaway from the panel was that Tesla has its work cut out for it.  Progress on electric vehicles will be tough.  The panelists agreed that natural gas vehicles make a lot of sense.  “The problem is you don’t really solve the CO2 problem,” said Mathias.  He did express confidence that battery research would eventually pay off in the end.  “All this progress will eventually be harvested at the hybrid level,” he said.  “It may not lead to pure electric level, but there is going to be a lot of improvement in hybrids.”