Posts

From lab to market, it’s a long haul

The Energy Information Administration has done us an enormous favor by producing a simple chart to make sense of where the development of energy storage technology is going. Energy storage, as the EIA defines it, includes heat storage, and a quick look at the chart reveals that those forms that involve sheer physical mechanisms – pumped storage, compressed air and heat reservoirs – are much further along than chemical means of storage, particularly batteries.

The EIA divides the development of technologies into three phases – “research and development,” “demonstration and deployment” and “commercialization.” It also ranks them according to a factor that might be called “chances for success,” which is calculated by a multiple of capital requirements times “technological risk.”

As it turns out, only two technologies that could contribute to transportation are in the deployment stage while three more are in early development. The two frontrunners are sodium-sulfur and lithium-based batteries while the three in early stages are flow batteries, supercapacitors and hydrogen. The EIA refers to hydrogen as one of the ways of storing other forms of energy generation, particularly wind and solar. But hydrogen is also being deployed in hydrogen in hydrogen-fuel-cell vehicles that have already been commercialized.

Other than building huge pumped-storage reservoirs or storing compressed air in underground caverns, the chemistry of batteries is the most attractive means of storing electricity, which is the most useful form of energy. Batteries have always had three basic components, the anode, which stores the positive charge, the cathode, which stores the negative charge, and the electrolyte, which carries the charge between them. Alexander Volta designed the first “Voltaic pile” in 1800 by submerging zinc and silver in brine. Since then, battery improvements have involved finding better materials for all three components.

Lead-acid batteries have become the elements of choice in conventional batteries because the elements are cheap and plentiful. But lead is one of the heaviest common elements and becomes impractical when it comes to loading them aboard a vehicle.

The great advantage of lithium-ion batteries has been their light weight. The lithium substitutes for metal in both anode and cathode, mixing with carbon and iron phosphate to create the two charges. Li-ion, of course, is the basis of nearly all consumer electronics and has proved light and powerful enough to power golf carts. The question being posed by Elon Musk is whether they can be ramped up to power a Tesla Model S that can do zero-to-60 with a range of 300 miles.

Tesla is not planning any technological breakthrough, but will use brute force to try to scale up. Enlarging li-ion batteries tends to shorten their life so the Tesla will pack together thousands of small ones no bigger than a AA that will be linked by a management system that coordinates their charge and discharge. Musk is betting that economies of scale at his “Gigafactory” will lower costs so that the Model X can sell for $35,000. According to current plants, the Gigafactory will be producing more lithium-ion batteries than are now produced in the entire world.

In the sodium-sulfur battery, molten sodium serves as the anode while liquid sodium serves as the cathode. An aluminum membrane serves as the electrolyte. This creates a very high energy density and high discharge rate of about 90 percent. The problem is that the battery must be kept at a very high temperature, around 300 degrees Celsius, in order to liquefy its contents. A sodium-sulfur battery was tried in the Ford “Ecostar” demonstration vehicle as far back as 1991, but it proved too difficult to maintain the temperature.

Flow batteries represent a new approach where both the anode and cathode are liquids instead of solids. Recharging takes place by replacing the electrolyte. In this way, flow batteries are often compared to fuel cells, where a steady flow of hydrogen or methane is used to generate a current. The great advantage of flow batteries is that they can be recharged quickly by replacing the electrolyte, rather than taking up to 10 hours to recharge, as with, say, the Chevy Volt. So far flow batteries have relatively low energy density, however, and their use may be limited to stationary sources. A German-made vanadium-flow battery called CellCube was just installed by Con Edison as a grid-enhancement feature in New York City this month.

Supercapacitors use various materials to expand on the storage capacity devices in ordinary electric circuits. They have much shorter charge-and-discharge cycles but only achieve one-tenth of the energy density of conventional batteries. As a result, they cannot yet power vehicles on a stand-alone basis. However, supercapacitors are being used to capture braking energy in electric trams in Europe, in forklifts and hybrid automobiles. The Mazda6 has a supercapacitor that uses braking energy to reduce fuel consumption by 10 percent.

The concept of “storage” can be also be expanded to include hydrogen, since free hydrogen is not a naturally occurring element but can store energy from other sources such as wind and solar. That has always been the dream of renewable energy enthusiasts. The Japanese and Europeans are actually betting that hydrogen will prove to be a better alternative than the electric car. Despite the success of the Prius hybrid, Toyota, Honda and Hyundai (which is Korean) are putting more emphasis on their fuel cell models.

Finally, methanol can be regarded as an “energy storage” mechanism, since it too is not a naturally occurring resource but is a way to transmit the potential of our vast reserves of natural gas. Methanol proved itself as a gasoline substitute in an extensive experiment in California in the 1990s and currently powers a million cars in China. But it has not yet achieved the recognition of EVs and hydrogen – or even compressed natural gas – and still faces regulatory hurdles.

All these technologies offer the potential of severely reducing our dependence on foreign oil. All are making technical advances and all have promise. Let the competition begin.

Can graphene, the wonder material, build better batteries?

In 1962, German researcher Hanns-Peter Boehm suggested the versatile carbon atom, which can form long chains, might be configured into a chicken-wire pattern to create a stable molecule one atom thick.

The idea remained a theoretical construct without even a name until 1987, when researchers started calling it “graphene.” Basically, graphene is two-dimensional graphite, the pure carbon material that makes up “lead” pencils. The term was also used to describe the carbon nanotubes that were beginning to attract attention for their ultra-solid properties. For a while there was talk of elevators reaching up into space until it became clear that creating nanotubes without impurities that degrade their properties was currently out of the reach of mass production.

Then in 2004, Andre Geim and Kostya Novoselov, two researchers at The University of Manchester, came up with something a little more prosaic. They applied Scotch tape – yes, ordinary Scotch tape – to pure graphite and found they could peel off the single layer of carbon in the chicken-wire pattern that Boehm had described. They called this substance “graphene” and were awarded the Nobel Prize in 2010.

The discovery of single-layer graphene has set off a stampede into research of its properties. Carbon is, after all, a versatile element, the basic building block of life that can also be packed into a material as hard as a diamond, which is also pure carbon. When stretched out into lattices a million times thinner than a human hair, however, it has the following remarkable properties:

  • It is the strongest material ever discovered, 300 times stronger than steel.
  • It is the most electrically conductive material ever discovered, 1,000 times more conductive than silicon.
  • It is the most thermally conductive material ever discovered.
  • It is bendable, shapeable and foldable.
  • It is completely transparent, although it does filter some light.

In short, graphene is now being touted as “material of the 21st century,” the substance that could bring us into an entirely new world of consumer products, such as cell phones that could be sewn into our clothes.

All this still remained somewhat theoretical, since no one had been able to produce graphene in dimensions larger than single tiny crystals. When these crystals were joined together, they lost most of their properties. Two weeks ago, however, Samsung announced that it has been able to grow a graphene crystal to the size of a wafer, somewhat on the same dimensions as the silicon wafers that produce computer chips. Thus, the first step toward a new world of electronics may be upon us. Graphene cannot be used as a semiconductor, since it is always “on” in conducing electricity, but combined with other substances it may be able to replace silicon, which is many researches believe is currently reaching its physical limits.

So what does this mean for the world of transportation, where we are always looking for new ways to construct automobiles and find alternative power sources to substitute for our gas tanks? Well, plenty.

Most obvious is the possibility of making cars out of much lighter-weight materials to reduce the power burden on engines. Chinese researchers recently came up with a graphene aerogel that is seven times lighter than air. A layer spread across 28 football fields would weigh only one ounce and a cubic inch of the material would balance on a blade of grass. All this would occur while it still retained its 300-times-stronger-than-steel properties. Graphene itself would not be used to construct cars, but it could be layered with other materials.

But the most promising aspect of graphene may be in the improvement of batteries. Lithium-ion batteries achieve an energy density of 200 Watt-hours-per-kilogram, which is five times the 40-Wh/k density of traditionally lead-acid batteries. That has won it the prime role in consumer electronics. But Li-ion batteries degrade over time, which is not a problem for a cell phone, but becomes prohibitive when the battery must undergo more than 1,000 charge cycles and is half the price of the car.

Lithium-sulfur batteries have long been thought to hold promise but they, too, deteriorate quickly, sometimes after only a few dozen charges. But recently, researchers at Lawrence Berkeley Labs in California modified a lithium sulfur battery by adding sandwiched layers of a graphene. The result is a battery that achieves 400 Wh/k – double the density of plain lithium-ion – and has gone through 1,500 charging cycles without deterioration. This would give an electric car a range of more than 300 miles, which is in the lower range of what can be achieved with the internal combustion engine.

And so the effort to improve electric vehicles is moving forward, sometimes on things coming out of left field. If graphene really proves to be a miracle substance, look for Elon Musk to be discussing its wonders as he prepares to build that “megafactory” that is supposed to produce lithium-ion batteries capable of powering an affordable new version of the Tesla.

Is butanol the next big thing in biofuels?

Fuel Freedom recently learned about a man named David Ramey who drove his 1992 Buick Park Avenue from Blacklick, Ohio to San Diego using 100 percent butanol, without making any adjustments to his engine.

Ordinarily this wouldn’t be big news. But with the EPA now considering cutbacks in the 2014 biofuels mandate, some producers of ethanol are starting to turn to butanol as a way of getting around the limitations of the 10 percent “blend wall” that is threatening to limit ethanol consumption. This could be another breakthrough in our efforts to limit foreign oil.

Butanol is the alcohol form of butane gas, which has four carbons. Because it has a longer hydrocarbon chain, butane is fairly non-polar and more similar to gasoline than either methanol or ethanol. The fuel has been demonstrated to work in gasoline engines without any modification to the fuel chain or software.

Since the 1950s, most butanol in the United States has been manufactured from fossil fuels. But butanol can also be produced by fermentation, and that’s where another opportunity for reducing our dependence on fossil fuels exists.

The key is a bacterial strain called Clostridium acetobutylicum, also named the Weizmann organism for pioneering biological researcher Chaim Weizmann, who first used it to produce acetone from starch in 1916. The main use for the acetone was producing Cordite for gunpowder, but the butanol, a byproduct, eventually became more important.

Once set loose on almost any substratum, Clostridium acetobutylicum will produce significant amounts of butanol. Anything used to produce ethanol — sugar beets, sugar cane, corn grain, wheat and cassava, plus non-food crops such as switchgrass and guayule and even agricultural byproducts such as bagasse, straw and corn stalks — can all be turned into butanol. (Of course, not all of these are economical yet.)

Given the modern-day techniques of genetic engineering, researchers are now hard at work trying to improve the biological process. In 2011, scientists at Tulane University announced they had discovered a new strain of Clostridium that can convert almost any form of cellulose into butanol and is the only known bacterium that can do it in the presence of oxygen. They discovered this new bacterium in, of all places, the fecal matter of the plains zebra in the New Orleans Zoo.

DuPont and BP are planning to make butanol the first product of their joint effort to develop next-generation biofuels. In Europe, the Swiss company Butalco is developing genetically modified yeasts from the production of biobutanol from cellulosic material. Gourmet Butanol, a U.S. company, is developing a process that utilizes fungi for the same purpose. Almost every month, plans for a new butanol production plant are announced somewhere in the world. Many refineries that formerly produced bioethanol are now being retrofitted to produce biobutanol instead. DuPont says the conversion is very easy.

What are the possible drawbacks? Well, to match the combustion characteristics of gasoline, butanol will require slight fuel-flow increases, although not as great as those required for ethanol and methanol. Butanol also may not be compatible with some fuel system components. It can also create slight gas-gauge misreadings.

While ethanol and methanol have lower energy density than butanol, both have a higher octane rating. This means butanol would not be able to function as an octane-boosting additive, as ethanol and methanol are now doing. There have been proposals; however, the proposals are for a fuel that is 85 percent ethanol and 15 percent butanol (E85B), which eliminate the fossil fuels from ethanol mixes altogether.

The only other objection that has been raised is that consumers may object to butanol’s banana-like smell. Other than that, the only problem is cost. Production of butanol from a given substratum of organic material is slightly lower than ethanol, although the increased energy content more than makes up for the difference.

Ironically, the EPA’s decision to cut back on the biofuels mandate for 2014 is now driving some refiners to convert to butanol, since its greater energy density will help it overcome the 10 percent “blend wall.”

“Michael McAdams, president of the Advanced Biofuels Association, an industry group, said butanol was a ‘drop-in’ fuel, able to be used with existing gasoline pipelines and other equipment because it does not have a tendency to take up water, as ethanol does,” The New York Times reported last October. “‘It’s more fungible in the existing infrastructure,’ he said. ‘You could blend it with gasoline and put it in a pipeline — no problem.’

“Butanol would also help producers get around the so-called blend wall, Mr. McAdams said…With the 10 percent limitation, ‘you don’t have enough gasoline to put the ethanol in,’ he said. ‘You don’t have that problem with butanol.’”

So here’s to butanol. It will be yet another big step in reducing our dependence in foreign fuels.

Take me shopping for eggs, copper and corn starch

Good news for a world often filled with bad news has recently been generated by two major U.S. universities, both in regards to the efficacy of alternative fuels. Maybe the announcements will lend confidence that America can find a way to balance economic growth with environmental concerns. Increasing success over time will mean that (paraphrasing in part, the late Sen. Robert Kennedy) the nation will not have to accept “what is” with respect to the dominance of gasoline as a fuel, but can consider “what could be” concerning the use of alternative, cleaner, safer, environmental-better and cheaper fuels.

Stanford University professors, in a paper co-authored by Dr. Matthew Kanan, assistant professor of chemistry, announced that they have developed a copper catalyst that can efficiently convert carbon monoxide and water into ethanol. Quoting from a recent MIT Technology Review (April 2014), “while the work is still experimental, it’s significant because the group was able to synthesize ethanol and other desired products with so little energy input.” The Stanford researchers envision a “two-step process in which carbon dioxide is first converted into carbon monoxide using either existing processes or more energy-efficient ones that are currently under development. Then, the carbon monoxide would be converted to ethanol or other carbon-based compounds electrochemically. The key to the new catalyst is preparing the copper in a novel way that changes its molecular structure.”

How long will it take to get from idea to market? If the copper-based process survives further lab tests and evaluations, and if it is then converted into a prototype that is able to produce ethanol fuel, a big push to convert the prototype to real-world status from both the private sector and government would be warranted.

Stanford’s “breakthrough” — if the process becomes marketable and can generate lower-priced, environmentally-safe ethanol that is capable of fueling flex-fuel vehicles (FFVs) and older, converted FFVs — will be significant, even perhaps a disruptive technology. With the proper support, hopefully in the not-too-distant future, increased use of the copper catalyst will minimize and maybe even end the food vs. fuel and land-use allocation fights, as well as help resolve GHG emissions and other pollutant issues that have sometimes frustrated the use of corn-based ethanol and muted receptivity to natural-gas-based ethanol. Technological improvements concerning production reflected in recent life-cycle analysis of corn-based ethanol and reasonable assumptions concerning the cost and environmental benefits of natural-gas-based ethanol, combined with the success of Stanford’s copper catalyst approach, could offer owners of FFVs (both converted and new vehicles) a wider variety of alternatives to secure ethanol that, clearly, will be cheaper, safer and better for the environment.

Stanford’s good news was matched by Cornell’s. Dr. Yingchao You and Dr. Hao Chen announced that they had discovered that a component of corn starch and the yolk shell structure of eggs improve the durability and performance of lithium batteries. In this context, they note that lithium-sulfur batteries are a very solid alternative to lithium-ion batteries. Stabilization problems related to its capacity can be resolved by using amylopectin, a polysaccharide (mainly good old corn starch).

Enveloping the battery’s lithium sulfur cathodes, with an encasing resembling the shell of an egg yolk (sulfur coated with an inexpensive polymer) also apparently improves the battery’s durability and performance.

Cornell has initiated a startup company to take the new and improved starch, egg-yolk shell battery to market. Maybe sometime soon, moderate and middle-income owners of electric cars that are less expensive than what is now available will be able to reduce their fear of driving long distances and feel confident about the life and efficiency of the batteries in their vehicles.

I avoided chemistry, physics and engineering in college. I knew I was not destined to become neither city planner nor designer at MIT when my first student-planned bridge went under water instead of over it. While my efforts were applauded by the Malthusians among my colleagues, they were not regarded highly by professors. Since graduation, unless supported by respected colleagues with a background in relevant sciences and engineering, I have been hesitant to suggest approval of science-driven energy innovations. I am a policy and program person. However, after review and discussions with trusted experts, I believe the Stanford and Cornell initiatives have a good chance to see the light of day, or, more appropriate, see the light in the market place. If one or both do, we will all be better off and the number of feasible alternative transportation fuels available to the consumer will grow. Hooray for copper, starch and eggs.

Of myths, oil companies and a competitive fuel market

I do not wish to join the intense dialogue concerning whether or not the government should allow exports of crude oil. Others are already doing a good job of confusing and obscuring the pros and cons of selling increased amounts of America’s growing oil resources overseas.

What I do want to do is just focus on the logic of one of the oil industry’s major arguments for extending the permitting of exports — again, not on the wisdom of exporting policy. Permit me to do so in the context of the industry’s long-standing argument concerning the pricing of gasoline to U.S. consumers. The argument is that more oil drilling in the U.S. will lower the price of gas and put America on the path to oil “independence.”

In somewhat of circuitous manner, oil companies are using the opposite of their domestic advocacy for “drill, baby, drill” policy as a way to keep prices lower at the pump. Their yin is that producing more oil in the U.S. and sending significant amounts overseas, combined with declining vehicular fuel demand, will lower gas prices. Economist Adam Smith would applaud the simplicity if he were alive and well. Their yang presents a bit more complicated set of “ifs.” That is, the industry presumes that fulfillment of the yen (excuse another pun) to export will result in more U.S. oil being drilled because of increased world demand generated by the assumed ability of the U.S. to produce oil at less costs than the world price for oil. It will also help foster infrastructure development in the U.S. to break up current log jams concerning oil transportation. Finally, it will facilitate more efficient refineries, allowing them to specialize in different types of oil. The yin and yang will result in (marginally) lower prices of gasoline — so goes the rhetoric and oil-industry-paid-for studies.

Paraphrasing Dr. Pangloss in “Candide,” the oil companies hope for the “best of all possible worlds.” But, before Americans run out and buy stock, note the price of gasoline does not directly reflect oil production volume. Indeed, gas prices, despite increased supplies, have gyrated significantly and now hover nationally over $4 a gallon. Generally, oil and gas prices relate to international prices, tension in the Middle East and investor and banker speculation — not always or directly domestic costs. Stockholders and executives of oil companies function not on patriotism but on profit and to the extent that the law permits, they will sell overseas to get the best price — in effect, the best dollar over payment for a barrel of oil. Consumers, I suspect, are rarely a significant part of their opportunity costing.

Unfortunately, lack of strong empirical evidence tempers the company’s argument that increased world demand will stimulate good things like refinery efficiency and log-jam-ending infrastructure. Maybe if the price per barrel is right (clearly, higher than it is now) and seems predictable for more than a small period of time, refinery and infrastructure developments will be positive. But, the costs to the consumer, in this context, will be higher. It will also be higher because shale oil is tight oil and more risky and costly to drill.

Oil independence is a myth suggested by oil industry and a non-analytical media. Certainly, the oil boom and less vehicular demand have generated less imports and less dependency. But we still buy nearly 300 billion dollars’ worth of oil every year to respond to need and we still produce far less than demand.

Somewhere in the dark labyrinth of each major oil company is a pumped-up (another pun), never-used, secret justification for franchise agreements impeding the sale of alternative fuels in their retail outlets. To alleviate guilt, it may go something like this: “Monopolies at the pump will allow us to make larger profits. You know we will someday soon want to give back some of the profits to consumers by lowering the price of gasoline.” If you believe this still-secret beneficence, let me sell you the Brooklyn Bridge.

There is another way to steady the gasoline market and lower consumer costs. Inexpensive conversions to allow older vehicles to use safe, cheaper and environmentally better alternative fuels (as opposed to gasoline), combined with expanded use by flex-fuel owners of alternative fuels, would add competition to the fuel market and likely reduce prices for consumers. Natural-gas-based ethanol is on the horizon and methanol, once the EPA approves, will follow, hopefully shortly thereafter. Electric cars, once costs are lower and distance on single charges is higher, will be a welcome addition to the competitive mix.

Is Elon Musk the next Henry Ford?

Elon Musk doesn’t mind making comparisons between himself and Henry Ford. Others are doing it as well.

In announcing his plans for a “Gigafactory” to manufacture batteries for a fleet of 500,000 Teslas, Musk said it would be like Ford opening his famous River Rouge plant, the move that signaled the birth of mass production.

The founder of PayPal and current titular leader of Silicon Valley (now that Steve Jobs is gone), Musk is not one for small measures. The factory he is now dangling before four western states would produce more lithium-ion batteries than are now being produced in the entire world. And that’s not all. He’s designing his new operation to mesh with another cutting-edge, non-fossil-fuel energy technology – solar storage. His partner will be SolarCity (where Musk sits on the board), run by his cousin Lyndon Rive. Together they are looking beyond mere automobile propulsion and are envisioning a world where all this solar and wind energy stuff comes true.

So, is Musk a modern-day Prometheus, bringing the fire to propel an entirely new transportation system? Or, as many critics charge, is he just conning investors onto a leaky vessel that is eventually going to crash upon the shores of reality? As the saying goes, we report, you decide.

One investor that is already showing some qualms is Panasonic, which already supplies Tesla with all its batteries and would presumably help the company fill the gap between the $2 billion it just raised from a convertible-bond offering and the $5 billion needed to build the plant. “Our approach is to make investments step by step,” Panasonic President Kazuhiro Tsuga told reporters at a briefing in Tokyo last week. “Elon plans to produce more affordable models besides [the] Model S, and I understand his thinking and would like to cooperate as much as we can. But the investment risk is definitely larger.” Of course, this is Japan, where “the nail that sticks out gets hammered down.” Corporate executives are not known for sticking their necks out.

Another possible investor is Apple, which has mountains of cash and, at least under Steve Jobs, was always willing to jump into some new field – music, cell phones – to try to set it straight. This is a little more ambitious than the Lisa or the iPod and Jobs is no longer around to steer the ship, but Apple and Musk officials held a meeting last spring that stirred a lot of talk about a possible merger. A much more likely scenario, according to several commentators, is that Apple would become a major player in the Gigafactory.

And a Gigafactory it will be. Consider this. The three largest battery factories in the country right now are:

1)    The LG Chem factory in Holland, Mich. is 600,000 square feet, employs 125 people and produces 1 gigawatt hour (GWH) of battery output per year.

2)    The Nissan factory in Smyrna, Tenn. is a 475,000 square-foot facility with 300 employees puts out 4.8 GWH per year.

3)    A123 Systems’ battery factory in Livonia, Mich. is 291,000 square feet, employs 400 people and produces 0.6 GWH per year.

Both LG and Nissan received stimulus grants from the Department of Energy, built to overcapacity and are now operating part-time.

Now here’s what Musk is proposing. His Gigafactory would cover 10 million square feet, employ 6,500 people and produce 35 GWH per year of battery power. Basically, Musk’s operation is going to be ten times better anything ever built before, at a time that most of what exists isn’t even running fulltime. Does that sound like something of Henry-Ford proportions? Similar to Ford’s $5 a day wages, perhaps?

There are, of course, people who think all of this is crazy. In the Wall Street Journal blog, “Will Tesla’s $5 Billion Gigafactory Make a Battery Nobody Else Wants?,” columnist Mike Ramsey expresses skepticism over whether Tesla’s strategy of using larger numbers of smaller lithium-ion is the right approach. “Every other carmaker is using far fewer, much larger batteries,” he wrote. “Tesla’s methodology – incorrectly derided in its early days as simply using laptop batteries — has allowed it to get consumer electronics prices for batteries while companies like General Motors Co. and Nissan Motor Co. work to drive down costs without the full benefits of scale. Despite this ability to lower costs, no other company is following Tesla’s lead. Indeed, in speaking with numerous battery experts at the International Battery Seminar and Exhibit in Ft. Lauderdale a few weeks ago, they said that the larger cells would eventually prove to be as cost effective, and have better safety and durability. This offers a reason why other automakers haven’t gone down the same path.

But Musk has managed to produce a car that has a range of 200 miles, while the Leaf has a range of 85 miles and the Chevy Spark barely makes 82. Musk must be doing something right. And with Texas, Arizona, Nevada and New Mexico all vying to be the site of the Gigafactory, it’s more than likely that the winning state will be kicking in something as well. So, the factory seems likely to get built, even on the scheduled 2017 rollout that Tesla has projected.

At that point, Musk will have the capacity to produce batteries to go in 500,000 editions of the Tesla Model E, which he says will sell for $35,000. Sales of the $100,000 Model S were 22,000 last year. Does this guy think big or what?

To date, Silicon Valley doesn’t have a terribly good record on energy projects. Since Kleiner Perkins Caufield & Byers fell under Al Gore’s spell in 2006, its earnings have been virtually flat and the firm is now edging away from solar and wind investments. Venture capitalist Vinod Khosla’s spotty record in renewables was also the subject of a recent 60 Minutes segment. But, as venture capitalists say, it only takes one big success to make up for all the failures.

Will Tesla’s Model E be the revolutionary technology that, at last, starts making a dent in oil’s grip on the transportation sector? At least one investor has faith. “I’d rather leave all my money to Elon Musk that give it to charity,” was the recent evaluation of multi-billionaire Google founder Larry Page.

Model building, Playboy and the impact of ethanol on gasoline prices

I recently read a number of provocative articles (or their summaries) by MIT’s Christopher Knittel and Aaron Smith. They faulted a pair of respected researchers from Iowa State University, Dermot Hayes and Ziaodong Du, in somewhat harsh tones. According to Knittel, the Iowa State pair, in their ethanol-related studies over a three year period (from 2009 through 2012), exaggerated the impact of ethanol on gas prices using relatively low present day ethanol blends.

I thought I was reading the script for a new urban crime show about drugs. Knittel, frequently, used terms like crack ratio and crack spread, ostensibly to note the weak link, found by Hayes at Iowa State, between the prices of ethanol and oil and both to gas costs at the pump. According to the authors, the price of gasoline is not substantially affected by the crack ratio; that is, the relative value of gasoline compared to oil or the price of gasoline divided by the price of oil and the current volume of its ethanol content.

Knittel’s papers angered Hayes, of the Iowa study. He claimed that, over time, the crack ratio and crack spread reflected a pretty strong causal relationship to gas prices. Language in his response to Knittel’s critique reminded me of those wonderful days when I was a dean, listening to different faculty, sometimes personally and sometimes based on methodology, criticize other faculty based on differing research results. The search for academic truth is often a noble road, but paraphrasing Robert Frost, a “road less traveled” — a road often full of human frailty and intellectual potholes.

Despite their critique of each other, both Knittel and Hayes’ studies are important and both, when read in context, should help one better understand the role of ethanol in affecting the cost of gas at the pump. Knittel is more right than wrong when he indicates that the crack ratio and spread does not fully explain the effect of ethanol on gas and oil prices, over time, and he is also correct in challenging the model used by Hayes to identify a reduction of $0.89 to $1.09 on gas prices because of higher ethanol production and higher crude oil prices.

Hypothetically, in isolation from other variables, the higher the crack ratio, the higher the price of gasoline. Further, if the price of ethanol is relatively low or on a downward trend, increased use of ethanol in gasoline blends, in theory, would cause the crack ratio to go down and the spreads to be higher, assuming gas prices remain the same or increase. Good news for consumers! Right? Maybe? Not always? Not at all? Not sure? What if?

I cannot claim real modeling expertise and would not, even for a minute, arbitrate between Knittel and Hayes concerning their use of models and its result — in terms of Hayes, significant impact of ethanol, in terms of Knittel, minor impact of ethanol.

But in terms of the policy argument between them, I suspect Knittel comes out the winner (full disclosure: I did graduate from MIT and while I love Iowa’s rolling hills, I do not like the climate and the fact that the state does not have a great symphony, nor a NFL football or American League baseball team). He points out that the crack ratio’s fluctuations in the ‘80s occurred when oil prices both declined and increased. Ethanol was not a factor and the movements in the crack ratio were not based on ethanol production. He seemingly, correctly, faults the folks in Iowa for not using the crack spread model in their 2011 and 2012 papers to evaluate the impact of eliminating ethanol because the two models —crack ratio which they used and crack spread which they didn’t — produce significantly different results and policy implications.

What does the dispute over models and model use have to do with public policy? A lot! The ethanol supporters touted the Iowa studies to support their claim that increased ethanol use reduces costs to consumers in a major way. Conversely, the ethanol critics suggest that the Knittel analysis debunks the assertion that use of ethanol as a blend will reduce gas prices in a major way.

Knittel suggests the Iowa studies vastly overstate the cost-related benefits of ethanol to the consumer and that Iowa’s model disregards or blurs the effect of price changes and swings in price of both ethanol and oil. Knittel also indicates that that the relationships between oil and gas prices, as well as oil, gas and ethanol prices are much less precise and more complicated than indicated by Hayes’ modeling efforts. Prices of all three fuels are much more subject to behavior and external events than acknowledged by either Knittel or Hayes.

The dialogue between Knittel and Hayes is helpful in sorting cost and price issues regarding ethanol and gasoline. I hope they continue at it, with less emotion, and with analyses better grounded in methodological analyses that generate a better job of linking model building with experience and empiricism. Meanwhile, no matter whether you believe the effect of ethanol on gas prices is high, moderate or low, if the U.S. government acquiesces in the use of higher ethanol blends like E60 and E85, and if the cost spread between ethanol and gasoline continues, an increasingly visible positive impact on fuel prices will likely be witnessed at the pump. Apart from any possible price differential related to use of higher blends, increased use of ethanol as an alternative transitional transportation fuel is in the public interest. According to most reputable studies, such use will respond well to many environmental problems caused by gasoline and it will help reduce America’s need to import oil…a continuing security problem.

Epilogue: I once taught a reasonably popular class on policy development and models. To liven up the class, I told the students that economic and policy models are abstractions of reality and to the extent that the models’ abstractions helps students understand reality, they are “good” models. They asked for examples. It was a late evening and I was tired. I told them to go look at the centerpieces in Playboy and Playgirl. Both presented models of airbrushed men and woman. At our next class, I asked the students if the models increased their understanding of men and women. They were bright and eager students, at least for this assignment, and they indicated, “No.” The models tilted too far toward abstractions and too far away from real world experience. They seemed to learn a lesson about the value of at least some models.

The Dennis Prager Show: Breaking Our Oil Addiction With Fuel Freedom

Radio host Dennis Prager speaks to Fuel Freedom Foundation cofounder, Yossie Hollander, about how the organization is planning to end America’s addiction to oil by opening the fuel market to American-made replacement fuels that are cheaper and cleaner. Hollander discusses the alternative fuels, the current regulatory environment and dispels some common myth surrounding the price of oil.