Posts

Japan bets big on hydrogen fuel cells

Remember when Japan’s Ministry of Economy, Trade and Industry (METI) used to sit atop the Japanese industrial complex, steering it like some giant Godzilla hovering over the entire world?

Those were the days when Japan’s government-industry partnership was supposed to represent the future, when Michael Crichton wrote a novel about how Japan would soon devour America, when pundits and scholars were warning that we had better do the same if we hoped to survive – before, that is, the whole thing collapsed and Japan went into a 20-year funk from which it has never really recovered.

Well those days may be returning in one small part as METI prepares to direct at least half the Japanese auto industry into the production of hydrogen-powered fuel-cell cars.

“Japanese Government Bets the Farm on Fuel Cell Vehicles” ran one headline earlier this month and indeed there’s plenty at stake for everyone. The tip-off came at the end of May when Jim Lentz, CEO of Toyota’s North American operations, told Automotive News that electric vehicles are only “short-range vehicles that take you that extra mile…But for long-range travel, we feel there are better alternatives, such as hybrids and plug-in hybrids, and, tomorrow, fuel cells.” The target here, of course, is Tesla, where Elon Musk appears to be making the first inroads against gasoline-powered vehicles with his $35,000 Model E, aimed at the average car buyer. Toyota was originally in on that deal and was scheduled to supply the batteries until it pulled out this spring, ceding the job to Panasonic.

But all that was only a preview of what was to come. In early June, METI announced it would orchestrate a government-private initiative to help Toyota and Honda market fuel-cell vehicles in Japan and then across the globe. Of course that leaves out the other half of Japan’s auto industry, Nissan and Mitsubishi, pursuing their version of the EV, but maybe the Japanese are learning to hedge their bets.

The hydrogen initiative will put the fuel-cell vehicle front-and-center in the race to transition to other forms of propulsion and reduce the world’s dependence on OPEC oil. Actually, hydrogen cars have been in the offering for more than twenty years. In the 1990s soft-energy guru Amory Lovins put forth his Hypercar, a carbon-fiber vehicle powered by hydrogen fuel cells. In 2005, California Gov. Arnold Schwarzenegger inaugurated the “Hydrogen Highway,” a proposed network of hydrogen filling stations that was supposed to blanket the Golden State. Unfortunately, only ten have been built so far, and there are still no more than a handful of FCVs (hydrogen fuel cell vehicles) on the road. Mercedes, BMW, Audi and VW all have small lines but none are marketed very aggressively in the United States.

This time, however, there may be a serious breakthrough. After all, Toyota, Honda and METI are not just in the business of putting out press releases. Toyota will begin production of its first mass-market model in December and Honda will follow with a 5-passenger sedan next year. Prices will start in the stratosphere — close to $100,000 — but both companies are hoping to bring them down to $30,000 by the 2020s. Meanwhile, GM is making noises about a fuel-cell model in 2016 and South Korea’s Hyundai is already unloading its hydrogen-powered Tucson on the docks of California.

What will METI’s role be? The supervising government ministry promises to relax safety standards, allowing on-board storage of hydrogen at 825 atmospheres instead of the current 750. This will increase the car’s range by 20 percent and bring it into the 350-mile territory of the internal combustion engine. Like the ICE, hydrogen cars can “gas up” in minutes, giving them a huge leg up on EVs, which can take anywhere from 20 minutes with superchargers to eight hours with household plugs. METI has also promised to loosen import controls so that foreign manufacturers such as Mercedes-Benz can find their way into Japan. And, of course, it will seek reciprocal agreements so Toyota and Honda can market their models across the globe.

So will the one-two punch of government-and-industry-working-together be able to break the ice for hydrogen vehicles? California seems to be a particularly ripe market. Toyota is already the best-selling car in the state and the California Energy Commission is promising to expand the Hydrogen Highway to 70 stations by 2016. Still, there will be stiff competition from Elon Musk if and when his proposed Gigafactory starts turning out batteries by the millions. Partisans of EVs and fuel-cell vehicles are already taking sides.

In the end, however, the most likely winners will be consumers who will now have a legitimate choice between hydrogen vehicles and EVs. It may be a decade or more before either of these technologies makes a significant dent in our oil consumption, but in the end it will be foreign oil providers that will be feeling the pain.

Can supercapacitors replace batteries?

The electric car depends on batteries, and before EVs become a large chunk of our automotive fleet, there are probably going to be some changes.

Right now, Elon Musk is betting he can produce millions of small lithium-ion batteries not much bigger than the ones you put in your flashlight and string them together to power a $35,000 Tesla Model E over a range of 200 miles at speeds of up to 70-80 mph. The Model E also will also need an infrastructure of roadside “filling stations” and home chargers, although the best superchargers still take more than 20 minutes to achieve 80 percent capacity.

But there is another way to store electricity, long familiar to the designers of electrical circuits. It’s the capacitor, a device that stores a small current by static electricity rather than a chemical reaction. Capacitors sit in all of your electrical devices, from radio circuits to the most sophisticated laptops, and are essential to providing the steady electric current needed to run such electronics. But what if the concept of capacitors could be scaled up to the point where they could help power something as big as an electric vehicle? Granted, it’s a long, long way from the 1.5-volt capacitor in your iPad and powering a 4,500-pound Tesla along the Interstate, but researchers are out there probing and are already thinking in terms of a breakthrough.

Right now there’s a huge separation between the things that batteries can do and the things that capacitors can do. In a way they are complementary — the strengths of one are the weaknesses of the other. But researchers are working toward a convergence — or perhaps just a way of using them in tandem.

A battery employs chemistry by splitting ions in the electrolyte so that the negative ones gather on the cathode and the positive on the anode, building up a voltage potential. When they are connected externally an electric current flows. Batteries have a lot of energy density. They can store electricity up into the megawatt range and release a flow of electricity over long periods of time. The process can also be reversed, but, because the reaction is (once again) chemical, it can take a long time.

Capacitors store electrons as static electricity. A thundercloud is a great big capacitor with zillions of electrons clinging to the almost infinite surface area of individual raindrops. And as everyone knows, this huge stored capacity can be released in a “bolt of lightening.” Capacitors can be recharged almost instantly but also they release their energy almost instantly, rather than the even flow of a battery. One of their major uses is in flash photography. But their capacity for storing power is also limited. On a pound-for-pound basis, the best capacitors can only store one-fifth to one-tenth the equivalent of a chemical battery. On the other hand, batteries can start to wear out after five years, while supercapacitors last at least three times as long.

Back in the 1950s, engineers at General Electric, and later at Standard Oil, invented what have come to be called “supercapacitors.” Basically, a supercapacitor changes the surface material and adds another layer of insulating dielectric in order to increase storage capacity. Surface area is the key and engineers discovered that powdery, activated charcoal vastly increased the capacity of the storage plates. Dielectrics were also reduced to ultra-thin layers of carbon, paper or plastic, since the closer the plates can be brought together, the more intense the charge. Since then they have begun experimenting with graphene and other advanced materials that may be able to increase surface area by orders of magnitude. All of this means that much more electricity can be stored in a much smaller space.

But the problem of low energy density remains. Even supercapacitors can only operate at about 2.5 volts, which means they must be strung together in series in vast numbers in order to reach voltage levels required to power something like an electric car. This creates problems in maintaining voltage balance. Still, some supercapacitors are already being employed in gas-electric hybrids and electric buses in order to store the power siphoned off from braking.

Researchers in the field now see some possibility for convergence. Most exhilarating is the idea that the frame of the car itself could be transformed into a supercapacitor. Last month, researchers from Vanderbilt University published an online paper entitled, “A Multifunctional Load-Bearing Solid-State Supercapacitor,” in which they suggested that load-bearing materials such as the chassis of a car or even the walls of your house could be transformed into supercapacitors to store massive amounts of electricity on-site. Combined with advances in evening the flow of electrons from supercapacitors, this opens up whole new avenues of approach to the electric car.

All of these developments are a long way off, of course. Still, supercapacitors support the possibility of pulling out of your driveway in the morning and returning at night in your EV without needing to gas up with foreign oil at your nearest filling station.

From lab to market, it’s a long haul

The Energy Information Administration has done us an enormous favor by producing a simple chart to make sense of where the development of energy storage technology is going. Energy storage, as the EIA defines it, includes heat storage, and a quick look at the chart reveals that those forms that involve sheer physical mechanisms – pumped storage, compressed air and heat reservoirs – are much further along than chemical means of storage, particularly batteries.

The EIA divides the development of technologies into three phases – “research and development,” “demonstration and deployment” and “commercialization.” It also ranks them according to a factor that might be called “chances for success,” which is calculated by a multiple of capital requirements times “technological risk.”

As it turns out, only two technologies that could contribute to transportation are in the deployment stage while three more are in early development. The two frontrunners are sodium-sulfur and lithium-based batteries while the three in early stages are flow batteries, supercapacitors and hydrogen. The EIA refers to hydrogen as one of the ways of storing other forms of energy generation, particularly wind and solar. But hydrogen is also being deployed in hydrogen in hydrogen-fuel-cell vehicles that have already been commercialized.

Other than building huge pumped-storage reservoirs or storing compressed air in underground caverns, the chemistry of batteries is the most attractive means of storing electricity, which is the most useful form of energy. Batteries have always had three basic components, the anode, which stores the positive charge, the cathode, which stores the negative charge, and the electrolyte, which carries the charge between them. Alexander Volta designed the first “Voltaic pile” in 1800 by submerging zinc and silver in brine. Since then, battery improvements have involved finding better materials for all three components.

Lead-acid batteries have become the elements of choice in conventional batteries because the elements are cheap and plentiful. But lead is one of the heaviest common elements and becomes impractical when it comes to loading them aboard a vehicle.

The great advantage of lithium-ion batteries has been their light weight. The lithium substitutes for metal in both anode and cathode, mixing with carbon and iron phosphate to create the two charges. Li-ion, of course, is the basis of nearly all consumer electronics and has proved light and powerful enough to power golf carts. The question being posed by Elon Musk is whether they can be ramped up to power a Tesla Model S that can do zero-to-60 with a range of 300 miles.

Tesla is not planning any technological breakthrough, but will use brute force to try to scale up. Enlarging li-ion batteries tends to shorten their life so the Tesla will pack together thousands of small ones no bigger than a AA that will be linked by a management system that coordinates their charge and discharge. Musk is betting that economies of scale at his “Gigafactory” will lower costs so that the Model X can sell for $35,000. According to current plants, the Gigafactory will be producing more lithium-ion batteries than are now produced in the entire world.

In the sodium-sulfur battery, molten sodium serves as the anode while liquid sodium serves as the cathode. An aluminum membrane serves as the electrolyte. This creates a very high energy density and high discharge rate of about 90 percent. The problem is that the battery must be kept at a very high temperature, around 300 degrees Celsius, in order to liquefy its contents. A sodium-sulfur battery was tried in the Ford “Ecostar” demonstration vehicle as far back as 1991, but it proved too difficult to maintain the temperature.

Flow batteries represent a new approach where both the anode and cathode are liquids instead of solids. Recharging takes place by replacing the electrolyte. In this way, flow batteries are often compared to fuel cells, where a steady flow of hydrogen or methane is used to generate a current. The great advantage of flow batteries is that they can be recharged quickly by replacing the electrolyte, rather than taking up to 10 hours to recharge, as with, say, the Chevy Volt. So far flow batteries have relatively low energy density, however, and their use may be limited to stationary sources. A German-made vanadium-flow battery called CellCube was just installed by Con Edison as a grid-enhancement feature in New York City this month.

Supercapacitors use various materials to expand on the storage capacity devices in ordinary electric circuits. They have much shorter charge-and-discharge cycles but only achieve one-tenth of the energy density of conventional batteries. As a result, they cannot yet power vehicles on a stand-alone basis. However, supercapacitors are being used to capture braking energy in electric trams in Europe, in forklifts and hybrid automobiles. The Mazda6 has a supercapacitor that uses braking energy to reduce fuel consumption by 10 percent.

The concept of “storage” can be also be expanded to include hydrogen, since free hydrogen is not a naturally occurring element but can store energy from other sources such as wind and solar. That has always been the dream of renewable energy enthusiasts. The Japanese and Europeans are actually betting that hydrogen will prove to be a better alternative than the electric car. Despite the success of the Prius hybrid, Toyota, Honda and Hyundai (which is Korean) are putting more emphasis on their fuel cell models.

Finally, methanol can be regarded as an “energy storage” mechanism, since it too is not a naturally occurring resource but is a way to transmit the potential of our vast reserves of natural gas. Methanol proved itself as a gasoline substitute in an extensive experiment in California in the 1990s and currently powers a million cars in China. But it has not yet achieved the recognition of EVs and hydrogen – or even compressed natural gas – and still faces regulatory hurdles.

All these technologies offer the potential of severely reducing our dependence on foreign oil. All are making technical advances and all have promise. Let the competition begin.

CNG moves ahead on all fronts

The effort to substitute compressed natural gas for foreign oil in our gas tanks is moving ahead on all fronts across the country, in scores of municipal departments that are converting their fleets, in new gas stations that are opening and with entrepreneurs who are looking for ways to speed up the conversion.

Leading the pack is Clean Energy Fuels, T. Boone Pickens’ effort to put the nation’s natural gas resources to work in the transport sector. Clean Energy Fuels has targeted long-distance, heavy-duty trucks, which tend to stay on the Interstate Highway System and can be services at massive truck stops. In Pennsylvania, for instance, Clean Energy Fuels is building stations in Pittston and Pottsville that will serve trucks on heavily the traveled I-81 and I-476. They are scheduled to open later this year.

But much of Clean Energy Fuels’ real success is coming from the fleet conversion for major shipping firms that rely heavily on truck transportation. The company has had particular success with UPS. Fueling depots were recently opened in Oklahoma City and Amarillo, Texas. The carrier E.J. Madison, LLC has deployed a fleet of 20 long-haul LNG trucks that will utilize a CEF network of stations that stretches from Los Angeles to Jacksonville, Florida. Jacksonville is emerging as a hub of CEF activity as the company has opened a liquid natural gas (LNG) terminal there as well. LNG is more difficult to handle than compressed natural gas but has much greater energy density.

Rapidly expanding in Florida, CEF has just announced a grand opening of a CNG filling station that will service the Hillsborough Area Regional Transit Authority (HART), which provides public transportation throughout the Tampa metropolitan area. The opening kicks off a plan to convert HART’s entire fleet of public services buses and vans to compressed gas.

Just last week Clean Energy Fuels CEO Andrew Littlefair was in the news telling The Motley Fool that Tesla’s electric cars will not be in competition with CEF’s efforts. “Tesla and electric vehicles are really great for certain applications,” he told interviewer Josh Hall. “But hauling 80,000 pounds of cargo, natural gas is really well suited for that.”

However, even if Clean Energy Fuels doesn’t think CNG can compete with electric at the passenger-car level, others do. Last week the Wawa convenience store chain announced it will partner with South Jersey Gas to open CNG fueling stations in southern New Jersey. “Compressed natural gas gives us an opportunity to increase the convenience we offer our customers and positions us for the future as well,” Brian Schaller, vice president of fuel for Wawa told the press. “We’re excited about the growth potential.” With 600 stores on the East Coast from New Jersey to Florida, Wawa has plenty of room to grow.

Pennsylvania is becoming a hotbed of compressed gas progress as the state seeks to take advantage of the Marcellus Shale. The state has adopted a funding program to help businesses convert. One of the first to take advantage is Houston-based Waste Management, which received an $806,000 grant from the State Department of Community & Economic Development to switch 25 of its waste and recycling collection vehicles to CNG. Pennsylvania-American Water Company has also announced plans to convert its fleet with a $315,000 state grant. American Water, the largest water utility in the state, operates out of Scranton.

Nebraska is a long way from any natural gas drilling but the Uribe Refuse Services company of Lincoln has announced it will convert its entire fleet of 17 trucks to natural gas over the next few years. The first trucks were displayed in the city last week on Earth Day.

Oklahoma is a big oil-and-gas producing state and is making a major effort to convert state vehicles to natural gas. In 2011 Gov. Mary Fallin joined 15 other states in a multi-state memorandum of understanding committing them to purchase NGVs for the state fleet. The state now has 400 CNG vehicles and is pushing the federal government to convert its fleet in the state as well. Oklahoma is building CNG gas stations to match and now stands third in the nation behind California and New York.

The natural gas industry is putting its shoulder to the wheel on this effort. The American Gas Association and America’s Natural Gas Alliance (ANGA) have teamed up to sponsor “Add Natural Gas (+NG),” an effort that is encouraging entrepreneurs and mechanics to convert ordinary passenger cars already on the road to CNG. “Fleets across the country are already using natural gas vehicles to save money and reduce emissions,” says the group’s website. “However, natural gas can be used to fuel any vehicle. To demonstrate this, we worked with automotive engineers to add natural gas as a fueling option for some of the most popular vehicles on the market today.”

Performance CNG LLC is a Michigan startup that has been inspired to take up the initiative. The company recently had a hybridized 2012 Ford Mustang GT demonstrated as part of +NG’s campaign and is currently trying to raise $55,000 in capital on Indiegogo, an international crowd funding site. More than half the money would go to EPA emissions testing.

Not everyone is convinced that CNG is the way to go. Clean Energy Fuel’s stock has done poorly since January, based on investor skepticism that its market is not that big and that some liquid natural-gas based fuel – methanol of butanol – will prove easier to handl

Can graphene, the wonder material, build better batteries?

In 1962, German researcher Hanns-Peter Boehm suggested the versatile carbon atom, which can form long chains, might be configured into a chicken-wire pattern to create a stable molecule one atom thick.

The idea remained a theoretical construct without even a name until 1987, when researchers started calling it “graphene.” Basically, graphene is two-dimensional graphite, the pure carbon material that makes up “lead” pencils. The term was also used to describe the carbon nanotubes that were beginning to attract attention for their ultra-solid properties. For a while there was talk of elevators reaching up into space until it became clear that creating nanotubes without impurities that degrade their properties was currently out of the reach of mass production.

Then in 2004, Andre Geim and Kostya Novoselov, two researchers at The University of Manchester, came up with something a little more prosaic. They applied Scotch tape – yes, ordinary Scotch tape – to pure graphite and found they could peel off the single layer of carbon in the chicken-wire pattern that Boehm had described. They called this substance “graphene” and were awarded the Nobel Prize in 2010.

The discovery of single-layer graphene has set off a stampede into research of its properties. Carbon is, after all, a versatile element, the basic building block of life that can also be packed into a material as hard as a diamond, which is also pure carbon. When stretched out into lattices a million times thinner than a human hair, however, it has the following remarkable properties:

  • It is the strongest material ever discovered, 300 times stronger than steel.
  • It is the most electrically conductive material ever discovered, 1,000 times more conductive than silicon.
  • It is the most thermally conductive material ever discovered.
  • It is bendable, shapeable and foldable.
  • It is completely transparent, although it does filter some light.

In short, graphene is now being touted as “material of the 21st century,” the substance that could bring us into an entirely new world of consumer products, such as cell phones that could be sewn into our clothes.

All this still remained somewhat theoretical, since no one had been able to produce graphene in dimensions larger than single tiny crystals. When these crystals were joined together, they lost most of their properties. Two weeks ago, however, Samsung announced that it has been able to grow a graphene crystal to the size of a wafer, somewhat on the same dimensions as the silicon wafers that produce computer chips. Thus, the first step toward a new world of electronics may be upon us. Graphene cannot be used as a semiconductor, since it is always “on” in conducing electricity, but combined with other substances it may be able to replace silicon, which is many researches believe is currently reaching its physical limits.

So what does this mean for the world of transportation, where we are always looking for new ways to construct automobiles and find alternative power sources to substitute for our gas tanks? Well, plenty.

Most obvious is the possibility of making cars out of much lighter-weight materials to reduce the power burden on engines. Chinese researchers recently came up with a graphene aerogel that is seven times lighter than air. A layer spread across 28 football fields would weigh only one ounce and a cubic inch of the material would balance on a blade of grass. All this would occur while it still retained its 300-times-stronger-than-steel properties. Graphene itself would not be used to construct cars, but it could be layered with other materials.

But the most promising aspect of graphene may be in the improvement of batteries. Lithium-ion batteries achieve an energy density of 200 Watt-hours-per-kilogram, which is five times the 40-Wh/k density of traditionally lead-acid batteries. That has won it the prime role in consumer electronics. But Li-ion batteries degrade over time, which is not a problem for a cell phone, but becomes prohibitive when the battery must undergo more than 1,000 charge cycles and is half the price of the car.

Lithium-sulfur batteries have long been thought to hold promise but they, too, deteriorate quickly, sometimes after only a few dozen charges. But recently, researchers at Lawrence Berkeley Labs in California modified a lithium sulfur battery by adding sandwiched layers of a graphene. The result is a battery that achieves 400 Wh/k – double the density of plain lithium-ion – and has gone through 1,500 charging cycles without deterioration. This would give an electric car a range of more than 300 miles, which is in the lower range of what can be achieved with the internal combustion engine.

And so the effort to improve electric vehicles is moving forward, sometimes on things coming out of left field. If graphene really proves to be a miracle substance, look for Elon Musk to be discussing its wonders as he prepares to build that “megafactory” that is supposed to produce lithium-ion batteries capable of powering an affordable new version of the Tesla.

Is Elon Musk the next Henry Ford?

Elon Musk doesn’t mind making comparisons between himself and Henry Ford. Others are doing it as well.

In announcing his plans for a “Gigafactory” to manufacture batteries for a fleet of 500,000 Teslas, Musk said it would be like Ford opening his famous River Rouge plant, the move that signaled the birth of mass production.

The founder of PayPal and current titular leader of Silicon Valley (now that Steve Jobs is gone), Musk is not one for small measures. The factory he is now dangling before four western states would produce more lithium-ion batteries than are now being produced in the entire world. And that’s not all. He’s designing his new operation to mesh with another cutting-edge, non-fossil-fuel energy technology – solar storage. His partner will be SolarCity (where Musk sits on the board), run by his cousin Lyndon Rive. Together they are looking beyond mere automobile propulsion and are envisioning a world where all this solar and wind energy stuff comes true.

So, is Musk a modern-day Prometheus, bringing the fire to propel an entirely new transportation system? Or, as many critics charge, is he just conning investors onto a leaky vessel that is eventually going to crash upon the shores of reality? As the saying goes, we report, you decide.

One investor that is already showing some qualms is Panasonic, which already supplies Tesla with all its batteries and would presumably help the company fill the gap between the $2 billion it just raised from a convertible-bond offering and the $5 billion needed to build the plant. “Our approach is to make investments step by step,” Panasonic President Kazuhiro Tsuga told reporters at a briefing in Tokyo last week. “Elon plans to produce more affordable models besides [the] Model S, and I understand his thinking and would like to cooperate as much as we can. But the investment risk is definitely larger.” Of course, this is Japan, where “the nail that sticks out gets hammered down.” Corporate executives are not known for sticking their necks out.

Another possible investor is Apple, which has mountains of cash and, at least under Steve Jobs, was always willing to jump into some new field – music, cell phones – to try to set it straight. This is a little more ambitious than the Lisa or the iPod and Jobs is no longer around to steer the ship, but Apple and Musk officials held a meeting last spring that stirred a lot of talk about a possible merger. A much more likely scenario, according to several commentators, is that Apple would become a major player in the Gigafactory.

And a Gigafactory it will be. Consider this. The three largest battery factories in the country right now are:

1)    The LG Chem factory in Holland, Mich. is 600,000 square feet, employs 125 people and produces 1 gigawatt hour (GWH) of battery output per year.

2)    The Nissan factory in Smyrna, Tenn. is a 475,000 square-foot facility with 300 employees puts out 4.8 GWH per year.

3)    A123 Systems’ battery factory in Livonia, Mich. is 291,000 square feet, employs 400 people and produces 0.6 GWH per year.

Both LG and Nissan received stimulus grants from the Department of Energy, built to overcapacity and are now operating part-time.

Now here’s what Musk is proposing. His Gigafactory would cover 10 million square feet, employ 6,500 people and produce 35 GWH per year of battery power. Basically, Musk’s operation is going to be ten times better anything ever built before, at a time that most of what exists isn’t even running fulltime. Does that sound like something of Henry-Ford proportions? Similar to Ford’s $5 a day wages, perhaps?

There are, of course, people who think all of this is crazy. In the Wall Street Journal blog, “Will Tesla’s $5 Billion Gigafactory Make a Battery Nobody Else Wants?,” columnist Mike Ramsey expresses skepticism over whether Tesla’s strategy of using larger numbers of smaller lithium-ion is the right approach. “Every other carmaker is using far fewer, much larger batteries,” he wrote. “Tesla’s methodology – incorrectly derided in its early days as simply using laptop batteries — has allowed it to get consumer electronics prices for batteries while companies like General Motors Co. and Nissan Motor Co. work to drive down costs without the full benefits of scale. Despite this ability to lower costs, no other company is following Tesla’s lead. Indeed, in speaking with numerous battery experts at the International Battery Seminar and Exhibit in Ft. Lauderdale a few weeks ago, they said that the larger cells would eventually prove to be as cost effective, and have better safety and durability. This offers a reason why other automakers haven’t gone down the same path.

But Musk has managed to produce a car that has a range of 200 miles, while the Leaf has a range of 85 miles and the Chevy Spark barely makes 82. Musk must be doing something right. And with Texas, Arizona, Nevada and New Mexico all vying to be the site of the Gigafactory, it’s more than likely that the winning state will be kicking in something as well. So, the factory seems likely to get built, even on the scheduled 2017 rollout that Tesla has projected.

At that point, Musk will have the capacity to produce batteries to go in 500,000 editions of the Tesla Model E, which he says will sell for $35,000. Sales of the $100,000 Model S were 22,000 last year. Does this guy think big or what?

To date, Silicon Valley doesn’t have a terribly good record on energy projects. Since Kleiner Perkins Caufield & Byers fell under Al Gore’s spell in 2006, its earnings have been virtually flat and the firm is now edging away from solar and wind investments. Venture capitalist Vinod Khosla’s spotty record in renewables was also the subject of a recent 60 Minutes segment. But, as venture capitalists say, it only takes one big success to make up for all the failures.

Will Tesla’s Model E be the revolutionary technology that, at last, starts making a dent in oil’s grip on the transportation sector? At least one investor has faith. “I’d rather leave all my money to Elon Musk that give it to charity,” was the recent evaluation of multi-billionaire Google founder Larry Page.

Tesla Takes It to the Next Level

This will be a week for watching Tesla, not only because the company’s stock had soared to new heights but because Elon Musk seems poised to take it to the next level – manufacturing batteries.

Musk has scheduled a conference call this week and gives every indication is he will be announcing plans for a new “Giga factory” where the Silicon Valley auto company will manufacture its own batteries. “Very shortly, we will be ready to share more information about the Tesla Giga-factory,” Musk told shareholders in his 4th quarter letter last week. This will allow us to achieve a major reduction in the cost of our battery packs and accelerate the pace of battery innovation.”

In a way the company has little choice. If Tesla is to move down-market from its current luxury niche – which has always been the plan – it is will need to buy the equivalent of the world’s entire current output of lithium-ion. The easiest thing to do is to go into manufacturing itself.

As usual, Musk will be doing things with a flair. Rumor is that he will be combining with SolarCity, which is run by his cousin Lyndon Rive, to produce a facility running largely on solar power. This will take us way beyond fossil fuels into the kind of world environmentalists imagine, where intermittent solar and wind power are stored to provide the kind of “high-9’s” reliability required by an industrial, digital society. And the key to that will be the same thing that Musk is working on now – batteries.

This kind of convergence is the reason for the number-two rumor of the week – that Tesla and Apple have engaged for a possible collaboration, even a merger. Last week San Francisco Chronicle reporters Thomas Lee and David Baker revealed that Apple’s M&A specialist Adrian Perica met with Musk last spring. What did they talk about?  Obviously a joint venture is in the air. Remarkably, only last October German stock analyst Adnaan Ahmad wrote an open letter to Apple saying it should consider entering the auto business by buying Tesla. The reasoning is as follows:

  • Despite its reputation for cutting-edge products, Apple’s traditional market for personalized devices seems to be reaching its limits. Sales of smart phones and tablets are maturing. Apple’s Next Big Thing is supposed to be a smart watch. A watch?  Is that an appropriate ambition for the world’s most innovative company?  As Steve Jobs did so many times, Apple need to enter an entirely new business and turn it upside down.
  • Apple is sitting on $160 billion in cash. It could literally buy almost any company in the world. Even with a market capitalization that is inflated by high expectations, Tesla is only worth $24 billion. The whole thing is doable.
  • Tesla needs an infusion of cash if it is to break out of its luxury niche and provide a car for the masses. The company’s proposed Gen III would sell for $35,000 and compete with the Chevy Volt and the Ford Focus. But more than half of that cost is in the battery. If Tesla can achieve vertical integration and come up with some new innovations, it may be able to turn a profit. But Apple is in the battery business as well, since most of what’s under the hood in an iPad or iPhone is lithium-ion. There is a convergence taking shape.

Of course there are many things working against this vision. Both Tesla and Apple may deal in lithium-ion batteries but designs aren’t the same and the chemistry is different. Also, when it comes to storing huge amounts of electricity at the factory, lead-acid remains the preferred technology. It’s cheaper in a way that lithium-ion will find if very difficult to duplicate.

Still, there seem to be breakthroughs coming in battery research almost every week. Only two weeks ago, researchers at Harvard announced the invention of a “flow battery” that stores a charge in organic liquids rather than metals. At the University of Limerick, researchers announced the development of a new germanium nanowire-based anode that greatly expands the capacity and lifetime of lithium-ion batteries. And researchers at Stanford said they had developed a silicon anode based on the design of a pomegranate seed that improves lithium-ion storage capacity by a factor of 10. All this is within the space of the last two weeks.

Batteries are hot and Elon Musk will be walking right into the middle of it. He has proved Tesla’s charging system has legs. The first Model S just made the 3,464-mile journey from Los Angeles to New York in 76 hours using Tesla’s new network of supercharger stations. Recharging has been reduced to just over an hour. Model S sales hit 22,500 for 2013, exceeding expectations. With all this success under its belt, the company is preparing to move down-market, where it can really have an impact on our fossil fuel dependence.

Like many Silicon Valley entrepreneurs, Musk is obsessed with space travel. He says he wants to be buried on Mars – “and not on impact.” With Steve Jobs gone, Musk may be the man to take Silicon Valley’s venture into alternative automobile propulsion to the next level.