Posts

A Big Year for Natural Gas Vehicles

“The NGV market experienced a growth spurt in late 2013, and that is expected to continue in early 2014, with new engineers and vehicles coming to market.”

That’s the conclusion of a very optimistic report issued by Navigant Research on the progress of natural gas vehicles – particularly NG trucks and buses – in the United States and the world.  (The report, sorry to say, costs $4000 but the executive summary can be seen online at http://www.navigantresearch.com/research/natural-gas-trucks-and-buses.)

“As the cost of oil climbs and emission from large diesel and gasoline engineers garner more scrutiny, fleets and governments are increasingly looking for alternative to fulfill their needs at lower costs and with lower emissions,” says the study.  “At the same time, new drilling techniques and new pipelines make natural gas a significantly more competitive vehicles than a decade ago.  The result is growing markets for medium duty and heavy duty NG trucks and buses.”

Indeed, the Navigant report does not anticipate an expanding market for natural gas vehicles in general but sees growth concentrated in the area of trucks and buses, particularly fleet vehicles for large corporations and municipalities.  The great advantages here are: a) vehicles can be bought in bulk; b) they can be fueled at central depots, and c) fleet vehicles tend to pile up the mileage, which means a quicker payback period from savings over gasoline.

In Palmdale, California, AT&T has converted its utility trucks to compressed natural gas in an effort to save money on fuel and cut down on carbon emissions.  “The vans are large enough to accommodate bulky gas canisters hidden beneath the floor,” reports Robert Wright in the Financial Times.  [http://www.ft.com/intl/cms/s/0/9f06bea8-69ea-11e3-aba3-00144feabdc0.html#axzz2osEhWAna]  The conversion costs $6,000 but operating costs will be reduced 10 cents per mile, meaning the initial investment will be recouped after 60,000 miles.  Most utility fleet vehicles hit that number within two years.

Some municipalities are even finding it worthwhile to switch to natural gas in smaller vehicles.  In Conway, Arkansas, the police department’s Chevy Tahoes are being converted to run on natural gas.  The effort is being promoted by Southwestern Energy, which will be building two CNG filling stations in the area.  Trussville, Alabama is scheduled to make the same conversion next year.

The switch to natural gas will receive a big boost in 2014 when Cummins Westport, a Connecticut company, introduces a 12-liter NG engine that is designed to sell between the existing 9- and 15-liter products.  “This will is expected to provide robust growth for the day cab market in North America,” says Navigant.  Volvo Trucks will also be taking aim at that market niche with a 13-liter LNG dual fuel engine.

Hovering behind all this is the effort by T. Boone Pickens’ Clean Energy Fuels to build a “natural gas highway” across America.  CLNE, which trades on the NASDAQ, plans to sell natural gas at truck stops along the nation’s interstate highway system.  The company is even planning to build its own liquid natural gas terminal in Jacksonville, Florida.

“Natural gas is a better transportation fuel than gasoline,” says the indomitable Pickens, who is engaged to be married for the fifth time at age 85.  “It’s cheaper, it’s cleaner and it’s a domestic resource.”

In fact the market is now getting so crowded that providers are starting to bump up against each other.  In the Northwest, Clean Energy is objecting to plans by Puget Sound Electric, Portland-based NW Natural and Spokane-based Avista Utilities to build filling stations for natural gas vehicles.  “We feel that because of their monopoly status, regulated utilities will have an unfair advantage entering the natural gas refueling market,” said Warren Mitchell, chairman of Clean Energy.   “Choices in the marketplace are a good thing,” responded Ben Farrow, of Puget Sound.  “We don’t want to compete unfairly.”

Nevertheless, despite all this activity in the United States, Navigant actually sees Asia as natural gas’s prime growth market.  By 2020 the report anticipates annual sales of 400,000 medium and heavy-duty trucks and buses, but the Asian Pacific will account for an astounding 76.2 percent of these sales while North America will provide only 12.7 percent and Europe 8.6 percent.  With 1.2 million NGVs on the road by that time, China and the United States will represent a combined 96 percent of the world market.

Compressed natural gas still has its problems.  Even when stored at 3,600 pounds per square inch, compressed gas takes up five times the space of a gas tank holding the same amount of energy.  This means that on a Chrysler Ram 2500 pick-up the tank still occupies nearly half the truck’s rear cargo bay.  Obviously, the bigger the truck or bus, the better it will be at accommodating this bulk.  But when it comes to ordinary passenger cars, finding room for the gas tank will be much more difficult.  That is why there is still only one NG passenger vehicle – a Honda Civic – on the road today.

Converting passenger vehicles to natural gas will probably require a liquid fuel.  Methanol and butanol, both of which can be made from natural gas feedstock, are likely candidates. But that still lies ahead. For now, the progress of CNG among heavy duty trucks and buses is an encouraging sign that we may be able to reduce our dependence on foreign oil.

There’s Gold in Them Thar’ Flares

Walter Breidenstein may be the only CEO in America who still answers the company phone himself. If his operation is still something of a shoestring, it’s because he’s spent four years trying to duel with perhaps the most formidable foe in the country, the oil companies.

“I’ve been trying to get into North Dakota for four years to show them there’s a way to make money by stopping flaring,” says the 48-year-old who started his entrepreneurial career at 15 by washing dishes. “The oil companies have done everything they can to keep me out of the state and the bureaucracy has pretty much goes along with them. The companies know that as soon as they acknowledge we’ve got a workable system here, they’d have to buy one of our rigs for every well in the state.”

North Dakota, in case you haven’t heard, has become one of the biggest wasters of natural gas in the world by flaring off $1 billion worth a year while producing carbon emissions equal to 1million automobiles.  But oil is what the drillers are after and, as it was in the early days of the oil industry; gas is regarded pretty much as a nuisance. The result is gas flares that make the whole state look like neighboring Minneapolis from outer space.

The flaring has generated a lot of negative publicity, environmentalists are up in arms and landowners have sued over lost royalties. The big guys are starting to move into the state. The New York Times ran an article this week about new pipeline construction, fertilizer factories and GE’s “CNG in a Box,” which will capture flared gas and sell it asnatural gas.

Breidenstein has a different idea.  “Somewhere around 2000 I started reading about methanol technology and realized it was a very undervalued resource,” he says. “Then I read George Olah’s The Methanol Economy in 2006 and that convinced me.  At Gas Technologies we’ve been trying to put Olah’s vision into practice.”

Gas Technologies has developed a $1.5 million portable unit that captures flared gas and converts it to methanol. “It’s a very accessible device,” says Breidenstein.  “You can move it around on a flatbed truck.”  The company ran a successful demonstration of a smaller unit at a Michigan oil well last fall but still hasn’t been able to break into North Dakota.

“The oil companies’ attitude is that money is no problem as long as they don’t have to spend it,” says Breidenstein.  “I’ve been in the business 25 years and I know where they’re coming from. But the problem is no one is forcing them to deal with flaring. And as long as they can keep throwing that stuff into the atmosphere for free, nobody’s going to look for a solution.”

You’d think with a billion dollars worth of natural gas being burning off into the atmosphere each year, though, there’d be some say to make money off it and that’s what frustrates Breidenstein.

“Our rig costs between $1 and $2 million dollars,” he says.  “But by capturing all the products of flared gas, you can make around $3500 per day.  That puts your payback at around three to four years.  But the oil companies don’t think that way. They won’t look at anything that goes out more than six months.

That puts things in the hands of state regulators and so far they have sided with the oil companies. “By statute, the oil companies are allowed to flare for a year it there’s no solution that’s economical,” says Alison Ritter, public information officer for the North Dakota Department of Mineral Resources.  “There’s nothing we can do to require them to buy from one of these boutique firms. Many oil companies have already committed their gas to pipeline companies and they can’t back out of those contracts.”  Still, the pipelines may not be built for years. “You have to understand, the Bakken Oil Field is 15,000 square miles, the size of West Virginia,” adds Ritter.  “It’s hard to service it all with infrastructure. We’re building pipelines as fast as we can.” Of 40 applications for flaring exemptions submitted this year the state has approved two and denied one, with the other 37 pending.  While they are pending, flaring goes on.

Of course if Gas Technologies were to start receiving orders right now, they’d be hard pressed to produce a half-dozen of them let alone the 500 that the state might require. “We’ve had talks with venture capitalists but if you’re not from Silicon Valley, they’re not interested,” says Breidenstein.  “But we’ve got a business model here and we know it can work.”

At least someone has taken notice. This year Crain’s Detroit Business rated Gas Technologies Number One in the state for innovative technology, ahead of 99 other contenders, including General Motors, Ford, Volkswagen, Whirlpool, Dow Chemical and the University of Michigan.  “Because the Walloon Lake company’s patents are potential game-changers, its patents rank high on the value meter with a score of 156.57 (anything over 100 is considered good),” said the editors.

It may not be long before others start noticing as well.

Are Hydrogen Cars the Future – Again?

The hydrogen car may be on the road to another comeback – again.  At the annual auto show in Los Angeles last week, both Honda and Hyundai unveiled “concept cars” of hydrogen models they expect to be available by 2015.  As a result, the automobile press has been filled with stories its revived prospects.

“For a long time, hydrogen fuel-cell vehicles were seen as a tantalizing technology to help reduce society’s reliance on oil,” Brad Plumer wrote in the Washington Post. “But the vehicles themselves were seen as forbiddingly expensive. Not the pendulum may be swinging back.”

“Toyota made a decagon – the fuel-cell car is going to be a big part of our future,” wrote Bradley Berman in The New York Times, quoting Toyota spokesman John Hanson.  “Today Toyota is not alone,” he continued. “Four other carmakers – General Motors, Hyundai, Honda and Mercedes-Benz – are also promising fuel-cell cars in the next few years.”

The prospect of an automobile running on hydrogen is indeed perpetually attractive.  Hydrogen is the most common element in the universe.  When combined with free oxygen in the atmosphere it “combusts” to produce H2O – water.  There are no other “exhausts”. Thus hydrogen promises transportation absolutely clean of any air pollution.  No global warming, either.

But it isn’t quite that simple.  The question that always presents itself is, “Where do you get the hydrogen?” Although hydrogen may be the most common element on earth, all of it is tied up in chemical compounds, mostly methane and water.  Accessing this hydrogen means freeing it up, which requires energy.

Most of our commercial hydrogen is made by “reforming” natural gas, which splits the carbon and hydrogen in methane to produce carbon dioxide and free hydrogen. That doesn’t help much with global warming.  Another method is to split water through electrolysis. That is a much cleaner process but requires a considerable amount of electricity. Depending on what power source is used, this can produce zero or ample emissions. If it’s coal, the problem is made much worse. If it’s clean sources such as solar or nuclear, then there can be a strong advantage. In the 1930s, John Haldane proposed giant wind and solar farms that would generate hydrogen that could fuel all of society. Such facilities generating hydrogen for transportation would be a step toward such a utopia.

Even then, however, there are problems.  Hydrogen is the smallest molecule and leaks out of everything.  It is very difficult to transport.  Joseph Romm, a disciple of alternative energy guru Amory Lovins, was appointed head of hydrogen car development program under President Bill Clinton and worked for two years on its development.  In the end, he became very disillusioned and wrote a book entitled The Hype About Hydrogen, in which he argued that the idea really wasn’t practical. Romm is now one of the country’s premier global warming alarmists on ClimateProgress.org.

What has apparently brought hyfrohgen cars back to the forefront has been the substitution for platinum as the principal catalyst in the fuel cell process.

A fuel cell produces an electric current by stripping the electron off a hydrogen atom and running it around a barrier that is otherwise permeable to a naked proton.  The proton and electron are reunited on the other side of the barrier, where they combine with free oxygen to form water.  Until recently, platinum was the only substance that could fill this barrier function. This made fuel cells very expensive and raised the question of whether there was enough platinum in the world to manufacture fuel cells in mass production.  But several platinum substitutes have now been found, making fuel cells considerably cheaper and more accessible.

Estimates are now that next year’s Hyundai and Honda FCVs will sell for about $34,000, which puts them in the range of electric vehicles such as the Nissan Leaf and the Toyota Prius.  (The Tesla, a luxury car, is  priced in a much higher range,)  The problem then becomes fueling.  The FCV offers considerable advantages over the EV in that it has a range of 300 miles, comparing favorable to gasoline vehicles.  It can also be refilled in a matter of minutes, like gasoline cars, whereas recharging  an EVs can take anywhere from  20 minutes to three hours. But hydrogen refueling stations have not materialized, despite former governor Arnold Schwarzenegger’s promise of a “hydrogen highway.” At last count there were 1,350 EV recharging stations around the country but only ten hydrogen stations, eight of them In Southern California.

All this suggests that neither hydrogen cars or electric vehicles will be sweeping the country any time soon.  Neither the Chevy Volt nor the Nissan Leaf have sold well and are not expected to do much better next year.  If you read the press stories carefully, you soon realize that the reason the automakers are constantly cycling back and forth between electric and hydrogen cars is that they are trying to meet California’s requirements for low-emissions vehicles that will allow them to continue selling in the state. The problem, as always, is consumer resistance..  The automakers can manufacture all the hydrogen and electric cars they want but consumers are not always going to buy them, especially at their elevated price.  So the manufacturers will end up dumping them on car rental agencies where they will sit on the back lots, as did the first generation of EVs.

There is, however, one type of alternative that succeeded handsomely in California and had widespread consumer acceptance, although it is completely forgotten today.  That is methanol.  In 2003, California had 15,000 cars running on blends of up to 85 percent methanol.  Consumers were extremely happy and did not have to be dragooned into buying them.  Refueling was easy since liquid methanol slots right into our current gas stations. Cars that run on methanol can be manufactured for the same price as cars that run on gasoline.

The experiment only ended because natural gas, the main feedstock for methanol, had become too expensive.  In 2003, natural gas was selling as high as $11 per mBTU, making it more expensive than gasoline.  That was before the fracking revolution.  Today natural gas sells for less than $4 per mBTU and the industry is coping with a glut.  Methanol, which is already produced in industrial quantities, could sell for $1 less than motorists are now paying for energy equivalent in gasoline.  Moreover, methanol can be made from garbage and crop wastes and a variety of other sources that would reduce it’s carbon footprint.

Hydrogen and electric cars each have a future and it is good to see the auto companies keep experimenting with them.  But each has impediments that are going to be difficult to overcome. Methanol, on the other hand, is a technology that could be implemented today at a price that not require subsidies.  Even if it is only perceived as a “bridge” to some more favorable, low-carbon future, it is worth pursuing now.

 

A Thanksgiving Feast of Alternatives

Over the river and through the wood

To grandmother’s house we go.

The horse knows the way to carry the sleigh\

Through white and drifted snow.”

Thanksgiving has come and gone, Christmas is coming, and that makes me think of alternative fuels and finding something to replace gasoline in our engines.

What, after all, was the horse and sleight except an old-fashioned means of transportation?  It had served humanity since the Bronze Age.  It has often been said that Julius Caesar and George Washington used essentially the  same transportation technology in pursuing their wars

All this held through the early days of the 20th century. There is a famous scene Jules Verne’s The Mysterious Island, written in 1875, where the adventurers go to investigate a mysterious submarine – in a horse and carriage!  When people started assembling on the New York docks in 1913 to hear reports of the missing Titanic, half of them arrived in horses and carriages.

We eventually made the energy transformation to the “horseless carriage” of automobiles but it wasn’t easy. People were afraid of the new invention.  They didn’t know how to work it. They fretted over the extraordinary speeds that could be reached – 30 miles an hour!  They did not like the nasty exhausts that some new technologies produced.

Nor was it ever certain which means of propulsion for the new “automobiles” would prevail. There were three contenders – the electric car, the steam car and the internal combustion engine running on any number of fuels.  Gasoline was not the foremost possibility. When Henry Ford built his first model in 1895, called the “quadricycle,” he designed it to run on corn ethanol, which seemed like a reasonable alternative.

The steam car set speed records of 200 miles per hour and the electric showed great promise as a gadabout town car. But the internal combustion eventually prevailed. Why?  The steam car, running on coal, took too long to warm up – about 20 minutes.  The electric car had a very short range, as it still does today. The internal combustion engine was awkward because it required the driver to hand-crank the engine from the front.  There was also a question of whether there would be enough fuel available to run large numbers of cars.  At the time, oil was still a relatively rare commodity, marketed mainly for the “lamps of China.”  But when Spindletop gushed forth in 1901, questions about the oil supply faded.  And when Charles Kettering invented the electric starter in 1912, the battle was over.

Still, Henry Ford didn’t particularly like gasoline and never gave up on the idea that ethanol was a better alternative.  Gasoline had a lower octane rating, was much more toxic (particularly when blended with tetra-ethyl lead to raise its octane rating) and emitted more pollutants. It was also more explosive and required complex refining, whereas ethanol was relatively easy to produce. Ford had roots in farm country and as late as 1925, with the farm belt in a chronic recession, he argued that farmers should be growing their own fuel. “The fuel of the future is going to come from fruit like that sumac out by the road, or from apples, weeds, sawdust — almost anything,” he told The New York Times. “There is fuel in every bit of vegetable matter that can be fermented. There’s enough alcohol in one year’s yield of an acre of potatoes to drive the machinery necessary to cultivate the fields for a hundred years.”

These ideas still resonate today.  Making auto fuel from crops has become a reality since we add 10 percent corn ethanol to our gasoline supplies, cutting our dependence on foreign oil.  There is still talk about using the much larger portions of “crop wastes” to produce cellulosic ethanol, although the technology to do this economically has not emerged yet.  Electric cars are getting another run as battery life and range are extended.  And there is a range of other alternatives – compressed natural gas (CNG), liquefied natural gas (LNG), hydrogen fuel cells and methanol derived from natural gas, coal or any number of organic sources, including garbage, crops and crop wastes.  We have a regular Thanksgiving feast of options before us.  It’s just a question of finding out what works best.

So remember, no technology is forever.  The holiday revelers sleighing toward grandmother’s house for Thanksgiving never dreamed they might one day be making the same trip across 300 miles of countryside at speeds of 60 miles an hour. And today when you’re speeding down the Interstate in a car powered by gasoline from Saudi Arabia, you may not dream that in ten years you could be driving a car running on switchgrass grown on the scrubland of South Dakota or natural gas pumped from the Marcellus in Pennsylvania.  Yet stranger things have happened.  You never know where that path over the river and through the woods is going to lead.

The Principal Impediment to Alternative Fuels Is – Government Regulation?

In their path-breaking study, “Fuel Choice for American Prosperity,” the Energy Security Council carefully outlines the dilemma that our complete dependence on oil for transportation has created.

“It’s not the oil we import, it’s the price,” was the way they summarized it. As I outlined in a previous post the authors show how OPEC still controls the bulk of the world’s oil reserves and has not increased its output since the 1970s. As a result, even though we have increased domestic production dramatically and cut down on consumption, we are actually paying more for our oil imports than we were ten years ago. Why?  Because, OPEC is still able to manipulate the price to keep it at $100 a barrel. It’s not the black stuff we import that crimps our economy, it’s the price of oil we must accept from a monopolistic cartel.

So what to do?  Do we set up protests outside OPEC’s corporate offices in Vienna?  Do we bring an anti-trust suit in some world forum? People have actually tried such things and gotten nowhere. No, the only way to extricate ourselves from this market is to break the monopoly that oil has on our transportation system. If oil had competitors, it will start acting like any other commodity and respond to supply and demand. The key to breaking the OPEC monopoly, says USESC, is to develop alternative fuels.

When it comes to asking why we have not made more progress in developing alternative fuels, however, USESC has a surprising answer: government regulation. Government regulation? How can that be? I thought the government was doing everything it could to foster alternatives and try to lower our oil imports. Well, as usually happens when the government gets involved in manipulating a market, things quickly get complicated and murky. Here’s what has happened:

CAFE standards. When Congress first started setting corporate fleet average standards, responsibility was given to the Environmental Protection Agency. In retrospect, this was an odd choice, since EPA is more concerned with air pollution than reducing oil consumption. The Department of Energy would have been a more logical choice. This didn’t become visible in the 1980s when pollution concerns centered on the combustion products of sulfur and nitrogen. But now that carbon dioxide and global warming have become the principal concerns, the EPA has subtly changed its emphasis. As USESC points out; “CAFE’s initial energy security centric vision has been blurred by the desire to use the law to promote greenhouse gas emission reduction goals.”

In its latest regulatory effort, for example, the EPA will reward auto companies for introducing alternative fuels by applying a “multiplier” to their corporate fleet average beginning in 2017. Every electric and hydrogen fuel cell vehicles will count as two vehicles in the denominator of the corporate average, phasing down to 1.5 by 2021. For plug-in hybrid electric vehicles (PHEVs) and compressed natural gas vehicles (CNG), the multiplier will be 1.6, phasing down to 1.3.

All this seems fair enough. EVs and FCVs use no gasoline and plug-in hybrids are only partially dependent on oil. The real problem, however, is that flexible-fuel vehicles – cars that are designed to burn ethanol, methanol or gasoline – have only been given credit based on how much E-85 they burn in real-world driving. The auto manufacturers have used this to avoid making improvements in car efficiency. This is regrettable because flexible fuel engines burning either ethanol from homegrown corn or methanol derived from natural gas would be the best say to cut down on imported oil. Both methanol and ethanol are liquids and fit right into our current gas station delivery system. Compressed natural gas and electricity, on the other hand, require a whole new replenishing system. Yet the EPA remains wary of both ethanol and methanol because they produce carbon exhausts. CNG also produces carbon exhausts, of course, and EVs drawing power from coal or natural gas will produce exhausts at the power plant. The EPA has tried to compensate for this by adding upstream carbon releases for EVs and other alternative fuels but it does not do the same for gasoline!  In short, the whole multiplier system is a mess. The EPA would do much better just trying to reduce oil dependence rather than bringing carbon emissions into the equation.

Costs of converting to alternative fuels: One of the most important steps in developing alternative fuels is converting existing gasoline vehicles to run on other fuels.

In general, there are three types of conversions – switching a gasoline or diesel car to run solely on another fuel (dedicated), changing a vehicles to run on higher alcohol blends (flex fuel), or installing an additional fuel tank so that the vehicles can burn the competing fuel as well (bi-fuel). In American, however, onerous regulations and staggering costs of conversion has deterred consumers.

The study points out that installing a CNG tank in an American car costs $10,000 while the same tank in Europe can be installed for $3,800. The difference is the strength of the tank as dictated by the EPA. Of course we don’t want to be in a situation such as Pakistan where CNG cars are exploding due to poor tank quality.  But even in comparison to other developed countries, U.S. regulatory requirements are excessive. 

Taxing by volume instead of by energy content: The federal and state governments places taxes on gasoline and any other product used to propel trucks and automobiles. The logic here is that the money goes into special highway trusts that maintain the roads. But the tax is imposed by the gallon rather than by energy content. USESC maintains that this is discriminatory because methanol, ethanol and other non-gasoline products have less energy density and therefore require more volume for the same amount of energy. This is a fine point and might be disputed by the oil industry, which would say if ethanol and methanol have less energy content, that is simply their tough luck. Ethanol, on the other hand, has been exempted from the federal highway tax and most state gas taxes, which is what makes it economical to add to gasoline.

The ban on methanol: Finally, although the USESC report does not even mention it, the biggest regulatory impediment to alternative fuels is the EPA’s failure to authorize the use of methanol in gas tanks. Putting anything in your gas tank requires permission from the EPA because of air pollution considerations. Although methanol actually produces less nitrous oxides and less particulate matter than gasoline, the EPA has never given it an OK. Although methanol made from natural gas might be the best alternative for replacing gasoline, it is does not yet have EPA approval.

Changing any and all of these regulations would require a huge concerted effort by some constituency that had a strong material interest in pushing it through Congress. Unfortunately, there is no such group. The natural gas industry is not yet organized around the issue and is more concerned about defending fracking and opening up natural gas exports. T. Boone Pickens is pushing CNG for trucks through his Clean Energy Fuels but there is no similar effort to promote the use of natural gas in cars. The entire farm bloc is behind corn ethanol, of course, which is why it has been so successful. But there is no similar interest promoting methanol, which may be just as good an alternative or better.

Under these circumstances, the best alternative is to persuade the auto manufacturers to produce flex-fuel vehicles that can run on any fuel – natural gas, hydrogen, biodiesel, E85 (85% ethanol) or M85 (85% methanol). The adjustment would not add significantly to the price of a new car and would open up the field to all the competitors attempting to replace gasoline.

Let the best fuel win.

It’s not the oil we import that makes us vulnerable, it’s the price

The United States Energy Security Council has written a brilliant report explaining why neither increased production nor improved conservation will solve our oil problems or free us from dependence on world events.

The Council numbers 32 luminaries from across the political spectrum, including such diverse figures as former National Security Advisors Hon. Robert McFarlane and Hon. William P. Clark, former Secretary of State Hon. George P. Shultz, Gen. Wesley Clark, T. Boone Pickens and former Sen. Gary Hart. The study, “Fuel Choice for American Prosperity,” was published this month.

The report wades right in, pointing out that even though our domestic production has increased and imports are declining, we are still paying as much or more for imported oil than we did in the past. The report states, “Since 2003 United States domestic oil production has risen sharply to the point the International Energy Agency projects that the United States is well on the way to surpassing Saudi Arabia and Russia as the world’s top oil producer by 2017. Additionally fuel efficiency of cars and truck is at an all-time high. As a result of these efforts, U.S. imports of petroleum and its products declined to under 36% of America’s consumption down from some 60% in 2005.”

Good news, right? Well, unfortunately not so fast. The report adds, “None of this has had any noticeable downward pressure on global oil prices. Over the past decade the price of crude quadrupled; the value of America’s foreign oil expenditures doubled and the share of oil imports in the overall trade deficit grew from one third to about 5%. Most importantly, the price of a gallon of regular gasoline has doubled. Despite the slowdown in demand, in 2012 American motorists paid more for fuel than in any other year before.”

How can it be that all this wonderful effort at improving production still has not made a dent in what Americans pay to fill up their cars? The problem, the study says, is that OPEC still has enough monopolistic market leverage to keep the price of oil where it wants. “While non-OPEC supply has been increasing and while the world economy is growing by leaps and bounds, OPEC, which holds some three quarters of the world’s economically recoverable oil reserves and has the lowest per barrel discovery and lifting costs in the world, has failed to increase its production capacity on par with the rise in global demand. Over the past four decades, world GDP grew fourteen-fold; the number of cars quadrupled,; global crude consumption doubled. Yet OPEC today produces about 30 million barrels of oil a day (MBD) – the same as it produced forty years ago.”

This means that even though we’re doing very well in ramping up supply and reducing demand, the overall distribution of reserves around the world still weighs so heavily against us that we’re basically spinning our wheels as far as what we pay for oil is concerned. The Council sums it up succinctly: “What the U.S. imports from the Persian Gulf is the price of oil much more so than the black liquid itself.”

So, what can we do? The Council says we have to change our thinking and come up with an altogether new approach: “If we are to achieve true energy security and insulate ourselves from countries that whether by design or by inertia effectively use oil as a economic weapon against us and our allies, America must adopt a new paradigm – one that places oil in competition with other energy commodities in the sector from which its strategic importance stems: the transportation fuel market.”

In other words, quite simply, we have to find something else to run our cars. “Although this may appear to be a daunting task, our country — and the globe — is abundant in energy resources that are cost-competitive with petroleum.”

In fact, there are numerous alternatives available. We have natural gas that can be used in a variety of ways, we have biofuels and we have electricity; all of which exist in abundant supply. What prevents us from using many of these alternatives is a regulatory regime and political inertia that prevents them from being employed. “Cutting into oil’s transportation fuel dominance has only been a peripheral political objective over the past forty years with inconsistent support or anemic funding from one Administration to the next. Competing technologies and fuels to the internal combustion engine and to gasoline and diesel have often been viewed as political pet projects by the opposing party. . . . What we must do is relatively simple: level the playing field and end the decades-old regulatory advantage that petroleum fuels have enjoyed in the transportation fuel market. By pursuing a free market-oriented policy that has as its primary objective a competitive market in which fuels made from various energy commodities can be arbitraged against petroleum fuels, the United States can lead the world in placing the best price damper of them all – competition – on oil.”

The Council is particularly critical of the “multiplier” system that has allowed the Environmental Protection Agency to become the arbiter of which alternative vehicles win favorable regulatory approval. The Corporate Average Fuel Efficiency (CAFE) standards have now been set so high — 54.5 mpg by 2025 — that no one realistically expects them to be achieved. But automakers can win “multipliers” by manufacturing alternative-fuel vehicles that are counted as more than one car, thus lowering the fleet average. The value of this multiplier, however, is determined solely by the EPA.

But as the study points out, the EPA has a conflicting mandate. On the one hand, it is supposed to be cutting gasoline consumption but on the other it is concerned with cutting pollution and carbon emissions. (Just why the EPA and not the Department of Energy is administering the CAFE program is a question worth asking.) So the EPA tends to favor cars that do not necessarily improve energy consumption, but cut emissions. Thus, it awards a two times multiplier to electric vehicles and fuel cell cars by only 1.3 times for plug-in hybrids and compressed natural gas. Meanwhile, flex-fuel vehicles, which could do most for reducing oil consumption, get no multiplier at all.

The Energy Security Council has many other good recommendations to make as well. I’ll deal with them at length in a later column. But for now, the takeaway is this: Greater production and improved efficiency will only get us so far. The real key to lowering gas prices and freeing ourselves from foreign dependence is to develop alternatives to the gasoline-powered engine.

A big flaring opportunity in North Dakota

Recently I wrote about how oil companies are flaring off $100 million worth of gas a month in the Bakken formation and what a huge waste or resources that represents.

Well, it didn’t take long for something to happen. A group of five law firms representing Bakken property owners sued 10 oil companies to end the practice. Their logic? It doesn’t involve environmental pollution or global warming. Instead, they’re arguing that the oil companies are depriving them of hundreds of millions in royalties by flaring off all that gas.

The case makes perfect sense. Gas is a valuable resource and the property owners are being deprived of huge amounts of money by wasting it. The case also avoids the complications that would come if the suit had been brought by the Sierra Club or Natural Resources Defense Council on environmental grounds. That would have involved all kinds of testimony about whether the flaring is really having an impact on the weather and what the level of damages might be. Instead, this is a straightforward case of dollars and cents. The property owners are being deprived of huge royalties. The oil companies have to compensate.

But beyond that, the lawsuit also offers a glittering opportunity to put methanol and its potential role in the transportation economy in the spotlight. So far, nobody’s talking about it much, but the conversion of natural gas into methanol could play a huge part in resolving this case.

The Bakken has developed so fast that the producers have not even been able to build oil pipelines into the area yet. Instead, the oil is being shipped by truck and rail. Burlington Northern has extended its lines into the region and most of the oil is now finding its way into major pipelines. As a result, Bakken production has leaped to 850,000 barrels a day, catapulting North Dakota into the number two position as an oil-producing state, behind Texas.

But the gas is a different thing. It can’t be stored in large quantities and pipelines are a long way from being extended and probably not worth it. Oil is now give times more valuable than gas at the wellhead, which gives drillers an enormous incentive to go after the oil and forget about the gas, hence the flaring. Thanks largely to North Dakota, we have moved into fifth place for flaring, behind Russia, Nigeria, Iran and Iraq, and ahead of Algeria, Saudi Arabia and Venezuela. The amount of gas flared around the world equals 20% of U.S. consumption. When we’ve moved ahead of Hugo Chavez, it’s time to do something about it.

So far, the proposed solutions have involved compressing natural gas or synthesizing it into more complex liquids. “The industry is considering and adopting various plans to flare less gas, including using the gas as fuel for their rigs and compressing gas into tanks that can be transported by truck,” reports The New York Times. “A longer-range possibility would be the development of projects that could produce diesel out of gas at or near well sites.” Hess, which already has a network of pipelines in the area, is rushing to complete a processing plant at Tioga that will turn gas into diesel and other more complex fluids.

But a better solution would be portable, on-site processing plants that can convert methane to liquid methanol, a far simpler process. Gas Technologies, a Michigan company, has just developed a conversion device that sits on the back of a trailer and can be hauled from well to well. “We have a patented process that reduces capital costs up to 70%,” said CEO Walter Breidenstein. “If we’re using free flare gas, we can reduce the cost of producing methanol another 40-5%.” Other companies are working on similar technologies for converting natural gas to methanol on-site.

All this would help bring attention to the role that methanol could play in replacing oil in our transportation economy. California had 15,000 methanol cars on the road in 2000 and found drivers were extremely happy with them. Methanol also fits easily into our current infrastructure for gasoline. But California gave up on the project because gas supplies seemed to be dwindling and the price was too high. Now we are flaring off 25% of the nation’s consumption in one state and methanol could easily be produced for $1.50 a gallon. It’s time to re-evaluate.

Of course, Walter Breidenstein will probably find that flared gas will not be offered for free. Those Bakken property owners still want their royalties. But the North Dakota lawsuit proves a spur for on-site methanol conversion and great opportunity to highlight the role methanol could play in our transportation economy.

The U.S. and China on methanol: Two roads converge

Nobel-Prize-winning chemist George Olah recently put methanol front and center again with a powerful Wall Street Journal editorial arguing for the conversion of carbon dioxide emissions from coal plants into methanol for use as a gasoline substitute in our car engines. Co-writing with University of Southern California trustee Chris Cox, Olah noted, “Thanks to recent developments in chemistry, a new way to convert carbon dioxide into methanol — a simple alcohol now used primarily by industry but increasingly attracting attention as transportation fuel — can now make it profitable for America and the world to reduce carbon-dioxide emissions.”

The authors argued that President Obama’s recently announced policy of mandating carbon sequestration for emissions from coal plants wastes a potentially valuable resource. “At laboratories such as the University of Southern California’s Loker Hydrocarbon Research Institute [founded by Olah], researchers have discovered how to produce methanol at significantly lower cost than gasoline directly from carbon dioxide. So instead of capturing and “sequestering” carbon dioxide — the Obama administration’s current plan is to bury it — this environmental pariah can be recycled into fuel for autos, trucks and ships.”

Olah, of course, has been the principal advocates of methanol since his publication of “Beyond Oil and Gas: The Methanol Economy,” in 2006.

To date, he has been recommending our growing natural gas supplies as the principal feedstock for a methanol economy. But the emissions from the nation’s coal plants offer another possibility.

This is particularly important since indications are that the Environmental Protection’s Agency’s assumption that a regulatory initiative will “force” the development of carbon-sequestering technology may be mistaken. A recent report from Australia’s Global CCS Institute said that, despite widespread anticipation that carbon capture will play a leading role in reducing carbon emission, experimental efforts have actually been declining.

The problem is the laborious task of storing endless amounts of carbon dioxide in huge underground repositories plus the potential dangers of accidental releases, which have aroused public opposition. Olah and Cox write, “By placing the burden of expensive new carbon capture and sequestration technology on the U.S. alone, and potentially requiring steep cuts in domestic energy to conform to carbon caps, the proposal could send the U.S. economy into shock without making a significant dent in global emissions… In place of expensive mandates and wasteful subsidies, what is needed are powerful economic incentives. These incentives should operate not just in the U.S., but in other countries as well.”

All this brings into stark relief the diverging paths that China and the United States have taken in trying to find some alcohol-based fuels to substitute in gas tanks. While Olah has been advocating a transformation to a methanol economy in this country, China is actually much further down the road to developing its own methanol economy. There are now more than a million methanol cars on the road in China and estimates show the fuel substitutes for 5-8% of gasoline consumption — about the same proportion that corn ethanol provides in this country.

In this country, the proposal has been that we derive methanol from our now-abundant supplies of natural gas. California had 15,000 methanol cars on the road in 2003 but curtailed its experiment because gas supplies appeared to be too scarce and expensive! Instead, the main emphasis has been on tax incentives and mandates to promote corn ethanol.

China has vast shale gas supplies and could benefit from America’s fracking technology. We could benefit strongly from China’s greater experience in developing methanol cars. The pieces of the puzzle are all there. Perhaps Olah’s proposal may be the catalyst that puts them all together.

Ironically, all this began with a Chinese-American collaboration in 1996. At the time, China had little knowledge or interest in methanol but was persuaded by American scientists to give it a try. Ford provided a methanol engine and China began ramping up its methanol industry and substituting it for gasoline. As a result, China is now the world’s largest producer of methanol, with about one-quarter of the market.

A year ago the Chinese national government was about to mandate a 15% percent methanol standard for gasoline when it ran into opposition from executives in its oil industry. Those leaders have since been deposed, however, and the 15% mandate may go ahead this year. In the meantime, provincial governments  have developed their own standards, with the Shanxi province west of Beijing in the lead.

Ironically, because methanol is only half the price of gasoline, many local gas stations are diluting their gasoline with methanol anyway in order to shave their costs. As a 2011 Energy Policy article by Chi-jen Yang and Robert B. Jackson of Duke University’s Nicholas School of the Environment reported, Private gasoline stations often blend methanol in gasoline without consumers’ knowledge… In fact, its illegal status makes methanol blending more profitable than it would be with legal standards. Illegally blended methanol content is sold at the same price as gasoline. If legalized, standard methanol gasoline would be required to be properly labeled and sold at a lower price than regular gasoline because of its reduced energy content. Such unannounced blending is now common in China.”

So both countries are feeling their way toward a methanol economy. As Olah points out, the problem in the U.S. is that the various advantages given to ethanol have not been extended to methanol.One means of addressing this inequity would be for Congress to pass the bipartisan Open Fuel Standard Act of 2013, which would put methanol, natural gas, and biodiesel on the same footing as ethanol (but without subsidies and without telling consumers which one to choose) for use in flex-fuel cars.

In China, the concern is about coal supplies but this could be alleviated with help from America’s fracking industry or by implementing Olah’s new technology for tapping coal exhausts.

Either way, the pieces are all there. It may be time to start putting them together.

Model building, Playboy and the impact of ethanol on gasoline prices

I recently read a number of provocative articles (or their summaries) by MIT’s Christopher Knittel and Aaron Smith. They faulted a pair of respected researchers from Iowa State University, Dermot Hayes and Ziaodong Du, in somewhat harsh tones. According to Knittel, the Iowa State pair, in their ethanol-related studies over a three year period (from 2009 through 2012), exaggerated the impact of ethanol on gas prices using relatively low present day ethanol blends.

I thought I was reading the script for a new urban crime show about drugs. Knittel, frequently, used terms like crack ratio and crack spread, ostensibly to note the weak link, found by Hayes at Iowa State, between the prices of ethanol and oil and both to gas costs at the pump. According to the authors, the price of gasoline is not substantially affected by the crack ratio; that is, the relative value of gasoline compared to oil or the price of gasoline divided by the price of oil and the current volume of its ethanol content.

Knittel’s papers angered Hayes, of the Iowa study. He claimed that, over time, the crack ratio and crack spread reflected a pretty strong causal relationship to gas prices. Language in his response to Knittel’s critique reminded me of those wonderful days when I was a dean, listening to different faculty, sometimes personally and sometimes based on methodology, criticize other faculty based on differing research results. The search for academic truth is often a noble road, but paraphrasing Robert Frost, a “road less traveled” — a road often full of human frailty and intellectual potholes.

Despite their critique of each other, both Knittel and Hayes’ studies are important and both, when read in context, should help one better understand the role of ethanol in affecting the cost of gas at the pump. Knittel is more right than wrong when he indicates that the crack ratio and spread does not fully explain the effect of ethanol on gas and oil prices, over time, and he is also correct in challenging the model used by Hayes to identify a reduction of $0.89 to $1.09 on gas prices because of higher ethanol production and higher crude oil prices.

Hypothetically, in isolation from other variables, the higher the crack ratio, the higher the price of gasoline. Further, if the price of ethanol is relatively low or on a downward trend, increased use of ethanol in gasoline blends, in theory, would cause the crack ratio to go down and the spreads to be higher, assuming gas prices remain the same or increase. Good news for consumers! Right? Maybe? Not always? Not at all? Not sure? What if?

I cannot claim real modeling expertise and would not, even for a minute, arbitrate between Knittel and Hayes concerning their use of models and its result — in terms of Hayes, significant impact of ethanol, in terms of Knittel, minor impact of ethanol.

But in terms of the policy argument between them, I suspect Knittel comes out the winner (full disclosure: I did graduate from MIT and while I love Iowa’s rolling hills, I do not like the climate and the fact that the state does not have a great symphony, nor a NFL football or American League baseball team). He points out that the crack ratio’s fluctuations in the ‘80s occurred when oil prices both declined and increased. Ethanol was not a factor and the movements in the crack ratio were not based on ethanol production. He seemingly, correctly, faults the folks in Iowa for not using the crack spread model in their 2011 and 2012 papers to evaluate the impact of eliminating ethanol because the two models —crack ratio which they used and crack spread which they didn’t — produce significantly different results and policy implications.

What does the dispute over models and model use have to do with public policy? A lot! The ethanol supporters touted the Iowa studies to support their claim that increased ethanol use reduces costs to consumers in a major way. Conversely, the ethanol critics suggest that the Knittel analysis debunks the assertion that use of ethanol as a blend will reduce gas prices in a major way.

Knittel suggests the Iowa studies vastly overstate the cost-related benefits of ethanol to the consumer and that Iowa’s model disregards or blurs the effect of price changes and swings in price of both ethanol and oil. Knittel also indicates that that the relationships between oil and gas prices, as well as oil, gas and ethanol prices are much less precise and more complicated than indicated by Hayes’ modeling efforts. Prices of all three fuels are much more subject to behavior and external events than acknowledged by either Knittel or Hayes.

The dialogue between Knittel and Hayes is helpful in sorting cost and price issues regarding ethanol and gasoline. I hope they continue at it, with less emotion, and with analyses better grounded in methodological analyses that generate a better job of linking model building with experience and empiricism. Meanwhile, no matter whether you believe the effect of ethanol on gas prices is high, moderate or low, if the U.S. government acquiesces in the use of higher ethanol blends like E60 and E85, and if the cost spread between ethanol and gasoline continues, an increasingly visible positive impact on fuel prices will likely be witnessed at the pump. Apart from any possible price differential related to use of higher blends, increased use of ethanol as an alternative transitional transportation fuel is in the public interest. According to most reputable studies, such use will respond well to many environmental problems caused by gasoline and it will help reduce America’s need to import oil…a continuing security problem.

Epilogue: I once taught a reasonably popular class on policy development and models. To liven up the class, I told the students that economic and policy models are abstractions of reality and to the extent that the models’ abstractions helps students understand reality, they are “good” models. They asked for examples. It was a late evening and I was tired. I told them to go look at the centerpieces in Playboy and Playgirl. Both presented models of airbrushed men and woman. At our next class, I asked the students if the models increased their understanding of men and women. They were bright and eager students, at least for this assignment, and they indicated, “No.” The models tilted too far toward abstractions and too far away from real world experience. They seemed to learn a lesson about the value of at least some models.

Carnivals, peas and oil predictions

Earlier in my life, I volunteered as a carnival “barker” — you know, the guy who tries to inveigle passers-by to throw a ring around a bottle to win something for their date or children. At the time, most paid a buck, lost, and were happy as I was, because the funds went to charity. While I was at my station, I happened to see a would-be magician working the old pea trick. You know, you followed the pea in the magician’s open hand and when the magician closed his hands, you picked the hand that you believe covers the pea. Again, passers-by lost all the time, because his sleight of hand was faster than their eyes (or their brains and their eyes). Charity, once again, came out ahead.

What’s all this got to do with oil? Well yesterday, I was bemused by a piece in the Financial Times by Ed Crooks, titled “U.S. oil boom resets on shaky foundations.” Earlier this week another article in another respected paper quoted an expert that stated that America is now and will be in the future much less dependent on Middle Eastern oil because of the oil boom and its likely continuance into the future. Numerous papers have called the now and future oil boom the Saudization of America.

Which pea will be picked up tomorrow by the media — the oil is a shaky pea, or the oil is our country’s genetic future pea. Can we, as consumers, based on often different expert projections related to the supply and demand for oil, pick the right pea ahead of the media’s grand pronouncements concerning oil production and consumption? The answer, given the probability of frequent expert-related projection amendments, the different methodologies involved and, yes, in some cases the captive quality of the projector, is no. If it’s Monday, oil is our salvation and America’s oil largess will be a road to riches; if it’s Tuesday, oil salvation is uncertain and we will remain dependent on importing oil; if it’s Wednesday, you put two oil experts in a room and you get three or four or more future projections; and if it’s Thursday, oil analysts, including some of the best, throw up their hands and say we really don’t know where oil is going. How can we be sure, given all the complex variables? Why did I go to college to study research and statistics? I want my tuition money back.

Oil projections recently seem more an art than science. Paraphrasing Ralph Waldo Emerson, and in defense (just kidding) of what often seems like “one a day” projections, foolish consistency is the hobgoblin of foolish minds , and the King from The King and I, oil projections are a “puzzlement.”

More attention should probably be paid to the Financial Times article. The author indicates that a question hangs over the U.S. oil boom in relation to increasing production costs. “The effort required to squeeze the oil out of the rock, from which it will not flow easily, means that shale production has a relatively high cost, compared with the traditionally cheap to extract reserves of the Middle East.”

Up to this point, Crooks (while he is named Crooks, he is not really a crook, but a fine writer) has been easy to follow. Relatively high oil per barrel costs, he indicates, lead to investment in drilling and, as important, innovative fracking technology, products and services. Small and mid-sized independent firms seemed to flourish, given their cost efficient innovative production processes. Service companies supporting drillers and production firms positioned themselves well, given the oil boom. It all seemed like fun and games. Everyone made money and met investor or stockholder expectations. Dinners at fancy restaurants seemed the norm.

But Crooks maintains that with the fall in prices for natural gas in 2012, the oil related equipment and service industry quickly met its waterloo. “Capacity utilization for pressure pumping equipment dropped to just 74%. Prices for pumping services dropped an estimated 22% between the first quarter of 2012 and the third quarter of 2013.” It was tough time for service firms. Many tried to switch from gas to oil drilling, but over capacity and underutilization were pervasive.

Recently, things appear to be looking up for the service and equipment sector. Oil prices seem relatively stable, at least until tomorrow, and gas prices seem on the uptake. Interestingly, several respected industry spokespersons suggest that a rise in prices for equipment and activities is likely more dependent on the hope for significant LNG exports and assumed higher natural gas prices (and production) than on significant increases in shale drilling for oil. But as Crooks points out, gas producers and servicers’ gain is oil’s pain. An increase in prices for services and a reduction in equipment overcapacity, the article suggests will raise the costs of oil production and lead to more investor as well as producer caution concerning investment in new risky oil wells. Remember most experts indicate that the best sites for new oil drilling have been leased or acquired. “It is possible that U.S. shale oil can continue to thrive only if shale gas continues to struggle.”

Several of the assumptions in Crooks’ piece seem to reflect the same shaky foundations that he indicates weaken projections concerning the U.S. oil boom. For example,

  • Yes, hard-to-get-at oil from shale will cause producers pause when thinking about future development. It will be much more expensive than drilling from conventional, easy-to-get-at U.S. or Middle East reserves. Since oil is globally traded, we could see an increase in dependency on imports.
  • Yes, the service and equipment industry will be in better shape if the natural gas industry grows and thrives. The costs of its equipment and services will rise accordingly. However, the increases in the price of natural gas, if they occur, and, if they are sustainable over time, will probably be relatively small in terms of dollars and may not significantly affect oil production and decisions. Sure, there are similarities between oil and natural gas drilling equipment and services, and while they constitute a large share of the on-site drilling costs (40-70%), rapid technological improvements matched by improved management of drilling have and continue to occur, lessening cost impact by improving productivity. They may reduce the harm seen by Crooks that could come to the oil industry from increased service costs. Other related factors, such as global oil consumption, supply and per barrel costs, international tensions, environmental sensitivities, financial speculation and profit seeking etc., will probably affect oil industry opportunity costing concerning drilling — even more than the increased cost of equipment and services. Taken together, these factors often explain short term changing oil-per-barrel prices. A large anticipated and continuous increase or decrease in per barrel costs will provide a drilling marker for investors and producers — over $100 more wells, under $70 or so less wells and uncertainty in between.
  • Yes, exporting LNG will improve the economic condition of the natural gas industry; just as removing export restrictions on crude oil will improve the economic viability of the already thriving oil sector. But the impact of extended large LNG sales abroad will likely take years, given the need to gain regulatory acquiescence to develop infrastructure and product. Similarly, the likelihood of eliminating restrictions on crude oil exports remains politically iffy.

Concern with the health of the natural gas industry— whether from Crooks’ perspective, because he believes growing gas prices will help strengthen the oil boom’s foundation, or my own, because the increased use of natural gas and its derivatives, ethanol and methanol as transitional transportation fuels will help reduce GHG emissions and improve the quality of the environment as well as reduce the price of gasoline at the pump and enhance America’s security, is legitimate. I wonder why Crooks neglected to discuss natural gas as a transportation fuel and the need for competition in America’s gasoline market in his otherwise provocative article. But it seems his core objective in the piece was the health and well-being of the oil industry. A bit more balance would have served him and the readers well.