Posts

Can New Catalysts Turn the Corner for Methanol?

The concept of converting our abundant natural gas supplies into liquid methanol in order to replace oil in our gas tanks has had trouble gaining traction for several reasons, all of which are about to face change.

The first reason is that most of the attention towards additives has been focused on ethanol made from corn. Driven by highly specific government mandates, corn ethanol — which now consumes 45 percent of the country’s corn crop — has taken up whatever role industrial methanol might have been chosen to play as a gasoline additive.

Secondly, there’s the problem of the Environmental Protection Agency. Not only has the EPA not approved methanol for gas tanks, the organization actually imposes huge fines on anyone who converts a gasoline engine to methanol without its permission.

The third, and less distinguishable explanation for methanol’s difficult implementation, is that the whole idea has never been very sexy. Methanol has little to do with the “Cutting Edge” or the “New Age Economy.” The manufacturing of methanol is a 60-year-old process practiced doggedly by dozens of industrial facilities around the world. They produce 33 billion gallons a year at the reasonable price of $1.50 per gallon; the energy equivalent of $2.35 gas. Meanwhile, Elon Musk seems to announce a new milestone for the Tesla, or some “breakthrough” in battery technology or cellulosic ethanol emerging from the university laboratories each week, making methanol appear rather plain-Jane and old fashioned. In effect, the solution to our gas tank woes has been hiding before us in plain sight.

Now an announcement from the Scripps Howard Research Institute and Brigham Young University may change everything. In a paper published last week in Science, a team led by Roy Periana of the Scripps Florida Center and Professor Daniel Ess of Brigham Young University say they have found catalysts made from the common elements of lead and thallium that facilitate the conversion of gaseous methane to liquid methanol, potentially making the process even cheaper and more accessible.

The hydrogen bonds in the alkanes (methane, ethane, propane, etc) are among the strongest in nature. To break them involves a heat-driven process invented in the 1940s that is conducted at 900 degrees Celsius. For more than two decades, the Scripps team has been looking for catalysts that would shorten this heat requirement. In the 1990s they came up with a series of catalysts employing platinum, palladium, rhodium and gold, but quickly realized that these elements were too rare and expensive for commercial application. So it was back to the drawing boards in search of something more useful.

Last week in Science they reported success:

The electrophilic main-group cations thallium and lead stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent.
The process reduces the heat requirement to only 200 degrees Celsius, which introduces enormous potential for energy savings. That “one-pot” notation is also crucial. Methane, ethane and propane all come out of the Earth together in natural gas. Currently, they must be separated before the heat-driven process can begin, With the new catalysts, no separation will be necessary. This means that methanol could become significantly cheaper to harvest than it already is. More importantly, these findings signify that methanol conversion will be able to weather the inevitable price increases that will result as demand for natural gas supplies multiplies.

Periana says the process is three years from commercialization. Reports Chemical & Engineering News:
The team is in discussion with several companies and entrepreneurs and would ideally like to jointly develop the technology with a petrochemical company or spin off a startup.

Periana also claims that “Initial targets would be higher-value, lower-volume commodity chemicals such as propylene glycol or isopropyl alcohol directly from propane.” He told reporter Stephen Ritter:

The next target could be to develop lower-temperature processes for higher-volume chemicals, such as converting methane to methanol and ethane to ethanol or ethylene as inexpensive sources for fuels and plastics.

An enormous portion of the world’s energy consumption is still tethered to oil, particularly the transportation sector, where oil constitutes 80 percent of consumption. As oil becomes more and more difficult to find, natural gas use is escalating. In addition, 25 percent of the world’s gas is still flared off because it has been uneconomical to capture. All this could change rapidly if a low-cost conversion to methanol becomes a reality. Reuters grasped the implications of this development when it reported that the new catalytic processes “could lead to natural gas products displacing oil products in the future.”

Are We Entering the Age of Batteries?

Last week in Houston, Secretary of Energy Dr. Ernest Moniz told CERA Conference attendees that storage batteries may be the next big energy breakthrough.  “It’s pretty dramatic,” he said.  “The research is moving very, very fast.”

Indeed, if you’re looking for “energy breakthroughs” on the Internet these days, most of the hits are likely to turn up something new about “flow batteries,” “ten times the storage capacity,” or some new cathode material that dramatically improves the performance of lithium-ion batteries.

So where do we stand in this energy revolution now, and what are the possibilities that any of these breakthroughs are likely to lead to real improvements in our attempts to wean ourselves off traditional energy resources like fossil fuels?

A good place to start is “Next Generation Electrical Energy Storage: Beyond Lithium Ion Batteries,” a panel put together for last February’s meeting of the American Association for the Advancement of Science in Chicago.  Three experts – Haresh Kamath; of the Electric Power Research Institute, Mark Mathias; of General Motors, and Jeff Chamberlain; of Argonne National Laboratory – discussed the latest developments in the industry.

All three panelists agreed that battery research is progressing along two separate tracks:

1) lithium-ion batteries that power most consumer electronic devices are now being scaled up for electric vehicles; and

2) larger and more durable conventional batteries for the storage of grid-scale electricity.

Despite whatever hopes Elon Musk may have that his new “Gigafactory” will be able to address both of these markets at the same time, that does not seem likely.  “Lithium-ion just doesn’t have the durability that we’re looking for in the utility industry,” Kamath of EPRI told the audience.  He continued:

I was doing cable research one time and we had a model for a product that would last 40 years.  The utilities looked at it and said, `Could you try for 60 or 80?’  The utilities are looking for things that last a long, long time.’ said Kamath.

“There’s a lot of experimenting going on,” Kamath added, “but everything that is on the grid right now is a demonstration.  No one has yet come up with a sustainable business model.”

With electric cars, on the other hand, the challenge will be in equipping batteries with enough energy density so that their weight does not load down the vehicle to the point of being counterproductive.  “The standard measure is that you need 100 kilowatt-hours of power to drive a mid-sized vehicle 300 miles,” said Mathias, who works at GM’s electrical storage research and development project.  He explained.

If you get up in the density range of 350 Watt-hours per kilogram, you can make it.  But current batteries are operating at around 150 Wh/kg, which gives them a range of 125 miles.  The best we can project is that they can achieve 225 Watt-hours per liter, which still leaves them short. (Mathias).

“Fuel cells operating on hydrogen actually do a much better job at this point,” he added.  “They can now get us up in the 300-mile range.  We regard them as electric vehicles as well.  It’s just that you generate the electricity on board.”

Then there’s the matter of cost.  Capital costs for lithium-ion batteries quickly rise into the $20,000 range.  Fuel cells cost only $6,000 and gas-electric hybrids, $4,000.  “The good news for EVs is that fuel costs are only about one-third that of gasoline,” said Mathias. “Over a span of 100,000 miles, a gasoline engine will cost you $10,000 in fuel.  A hydrogen fuel cell vehicle will cost only $6,000 and a pure EV, $3,333.”  Still, that’s a long time to wait and a long way from complete cost recovery.

Refueling time is also a bit of a problem.  “When you pump gasoline into your car, you’re actually adding range at a rate of 150 miles per minute,” said Mathias.  He went on to say:

With hydrogen fuel, it’s 100 miles-per-minute, which is acceptable. But even with the new 120-kW superchargers, you can only add mileage to an EV at a rate of 6 miles per minute.  If you take a long- distance trip, you’re going to spend 20 percent of your time       recharging. (Mathias)

Overall, Mathias was not overly optimistic about further improvements.  “There’s not much on the horizon,” he concluded.  He was more optimistic about hydrogen cars.

Chamberlain, of Argonne National Laboratory, is part of a $120 million program funded by the Department of Energy that is aimed at developing batteries with five times the current energy density at 1/5th the cost within five years.  “That’s a very ambitious goal,” he told the audience, “but we feel that’s what’s needed to transform the transportation sector.”  A long chain of national and university laboratories are involved in the project.  Of course, government goals and mandates are just that – projections that may or may not come true.  Steve Jobs was good at inspiring his cast to pursue seemingly impossible goals but the federal government does not always have the same success.

So far, the research has involved searching the periodic table for more candidates.  “We’re not sure what we’re going to come up with,” said Chamberlain, elaborating:

We’ve decided that capacitors will never help us reach our goal.  The charge dissipates too quickly.  So we’re exploring other materials.  It may involve a metallic anode and a suspended-particle cathode.  If you move to magnesium or aluminum, you’re releasing two electrons  instead of one.  But zinc-air and lithium-air doesn’t get you there               because they simply don’t have the power.”  (Chamberlain)

Chamberlain said that a lot is already known about lithium-ion.  “We may be able to get two times what we have now.”  He had to agree with Mathias that no other significant developments are on the horizon right now.

Mathias warned against new reports that are constantly announcing progress at the material level.  “We often realize right away that they’re not going to work,” he said.  “It’s not worth the manufacturing dollars.

Overall, the takeaway from the panel was that Tesla has its work cut out for it.  Progress on electric vehicles will be tough.  The panelists agreed that natural gas vehicles make a lot of sense.  “The problem is you don’t really solve the CO2 problem,” said Mathias.  He did express confidence that battery research would eventually pay off in the end.  “All this progress will eventually be harvested at the hybrid level,” he said.  “It may not lead to pure electric level, but there is going to be a lot of improvement in hybrids.”

Khrushchev, Gorbachev, Putin , Ukraine and Oil

How many of you have ever been to Russia? It is a fascinating place filled with fascinating people. While in Russia facilitating an Aspen Global Forum of U.S. and Russian leaders,  I visited Nikita Khrushchev’s grave. He lies under six feet of earth — probably  banging his shoe and confessing that he still wishes he could have incrementally changed Russia.  He was not Gorbachev, but neither was he Rasputin.

On top of his grave was a very attractive gravestone. One half was white, the other half black. I asked the workmen what it meant.They explained the contrast by indicating that Khrushchev was part evil doer of black deeds, but also in part a good man who wanted to change Russia.

The gravestone seems to fit the current situation in Russia. It is a place of great thinkers, great writers, great dancers, great scientists and decent people, but it is also the land of Putin whose modus operandi is often dark and destructive. Putin is no Gorbachev!

In the present Ukrainian situation, the dark and dangerous side of Russian leadership is visible. Currently proposed Western sanctions are not persuasive. Paraphrasing, we won’t come to the G8 meeting in Sochi  and we won’t have any more relationships with your military are not earth shattering.Trade limits or sanctions, if announced, may hurt, but Russia’s ability to cut off natural gas to Europe and the Ukraine as a counter measure will marginalize any effort to develop meaningful  responses. Obama and his colleagues do not want to engage in military sanctions in order to counter Putin’s new version of our own Monroe Doctrine.

Speaking of energy, oil, and natural gas, most energy related U.S and Russian executives have not been told to slow down or avoid searching for new businesses in Russia. As a recent CNBC report indicated, “ the U.S. produces more natural gas than any other nation and Russia is now the biggest oil producer.” U.S. firms are seeking an increased stake in  Russian oil, which is light and good for gasoline.  U.S. companies are even building the rigs for Russian drillers. While the U.S. imports relatively little oil from Russia, this could change depending on price. Russia is still among the top five importers of oil to the U.S.  In light of the Russian actions in Crimea, the price of gas at the pump is expected to head up again. The stakes are high, and at the present time, no government leader in either nation has seriously suggested interfering with the export and import trade network between U.S. and Russia.

I suspect that the U.S. and Russia will eventually agree to a deal on some sort of a pullback in Crimea and the possibility of a monitored arrangement concerning Russians living in both Crimea and the eastern part of Ukraine. I could be wrong. Russia could insist on remaining in or even annexing the Crimea and it could invade part of Eastern Ukraine.  I pray neither happens!

Would we react militarily in some form or manner, as we have at times in the Middle East in order to secure oil and gas supplies for the Ukraine and other needy western nations? I think not!  Such a provocation would lead to war and is  beyond the pale  for even ardent proponents of “getting tough” with Russia.  Indeed, because Russia’s military is strong, the U.S. and the West will most likely avoid any significant direct military response to possible Russian occupation/annexation of of the Crimea and even eastern Ukraine.

Possible high impact economic sanctions — different from the ‘I won’t come to your meetings and you cannot come to ours’ brand — would not be favored by most Western European countries or even the Ukraine, as they are dependent on Russia’s natural gas.  At the present time, the real options we have to counter Russia’s nefarious activities are not the best ones. While we could fulfill some of our allies’needs by exporting natural gas and oil, the decision to do so deserves (and I suspect is getting) hard analysis, especially in light of domestic U.S economic, political and security concerns about supply as well as demand and a fear of environmental problems, as well as increased consumer costs at the pump here at home. If shipping overseas passes muster, moving natural gas to our European allies and Ukraine could work both in providing needed gas and in possibly negatively affecting the price of Russian gas. Despite acknowledging the theoretical goal of oil independence, the world, including the U.S., is oil and gas dependent. We are lucky to have natural gas in ample supply, and if sane environmental regulations are applied, we can limit related methane and GHG emissions as well as other pollutants. Finally, we have an evolving and growing alternative fuel sector testing and developing renewable fuels.  Opening up U.S. fuel markets and fuel stations to increasingly available flex fuel vehicles and alternative fuels for consumers, including natural gas based ethanol and methanol, as well as electricity, can make us less dependent.

Progress on Fuel Efficiency: More is needed

Every now and then I will read a White House Blog.  They’re sort of a fun read when you’re depressed about the state of the world and the country.  The content always somehow reminds me of  Gene Kelly dancing in the street in the middle of the rain, or that old (possibly New Yorker) cartoon where the patient tells the psychiatrist that he is not doing well and the good doctor says ‘no you’re just fine, you’re happy and healthy.’  Probably neither is the proper analog to the politically necessary positive nature of the White House blurbs.  I marvel at times at the President’s ability to seek a better America, especially given the politics of the present.  While his optimism and tenacity don’t always come through as “Morning in America,” I believe that his attitude is based on a reasonable outlook about what the nation can do, if it can engage in an honest dialogue about key environmental and alternative fuel issues.

Last week’s blog focused on the White House’s effort to increase fuel efficiency standards.  It notes correctly that the President’s legislative approach to the environment has resulted in the toughest fuel economy standards in history:

“Under the first ever national program, average fuel efficiency for cars and trucks will nearly  double, reaching an average performance equivalent to about 54.5 miles per gallon by 2025….In 2011, the President also established the first-ever fuel efficiency and greenhouse gas standards for medium and heavy duty vehicles, covering model years 2014 through 2018.”

More is to come! Increased fuel efficiency standards are currently being addressed by the Administration, and the EPA is hard at work developing Tier 3 rules.

The Administration’s record is a decent one and has benefited the environment, lessened ghg emissions, and strengthened the economy. Regrettably though, fuel efficiency regulations primarily apply to new cars.  They should be matched by a cost efficient and comprehensive federal effort to encourage the conversion of older non flex fuel vehicles; they also should encourage Detroit to continue producing larger numbers of flex fuel cars.

In this context, EPA and Detroit automakers need to reach a consensus concerning effective engine recalibration alternatives, as well as an extension of consumer warranties and related financial coverage of recalibrated vehicles.  Without permitting older cars to achieve the fuel efficiency and environmental advantages of flex fuel vehicles, we will not be able to respond to Pogo’s admonition and Commodore Oliver Perry’s initial statement (paraphrased): that we, as a nation, have met the enemy, and he is us!

To grant primacy to new or relatively new flex fuel cars would increase the nation’s ability to reduce ghg emissions and other environmental pollutants (e.g. NOx and SOx). There are well over 200,000,000 non flex fuel cars in the U.S. that cannot readily use available fuel blends higher than E-15 and will not be able to use natural gas based ethanol that hopefully relatively soon will come on the market.

Lowering the certification costs of conversion kits by the EPA and increasing the number of manufacturers of those kits would bring down their price from around 1,000 dollars to the near 300 dollar level that is common in the “underground” market.  Simplifying legal conversion could  —and indeed would —-make an important environmental difference.  Such action would also open up the fuel market to competition, and likely lower the price of gas at the pump for consumers. Finally, such actions would also support the President’s objective to wean the nation off of oil and gasoline.  Oh Happy Day!  Go for it Gene Kelly and the American Association of Psychiatrists!  It might be time to show some real love for environmentally and efficiency neglected and needy older vehicles.

Tesla Takes It to the Next Level

This will be a week for watching Tesla, not only because the company’s stock had soared to new heights but because Elon Musk seems poised to take it to the next level – manufacturing batteries.

Musk has scheduled a conference call this week and gives every indication is he will be announcing plans for a new “Giga factory” where the Silicon Valley auto company will manufacture its own batteries. “Very shortly, we will be ready to share more information about the Tesla Giga-factory,” Musk told shareholders in his 4th quarter letter last week. This will allow us to achieve a major reduction in the cost of our battery packs and accelerate the pace of battery innovation.”

In a way the company has little choice. If Tesla is to move down-market from its current luxury niche – which has always been the plan – it is will need to buy the equivalent of the world’s entire current output of lithium-ion. The easiest thing to do is to go into manufacturing itself.

As usual, Musk will be doing things with a flair. Rumor is that he will be combining with SolarCity, which is run by his cousin Lyndon Rive, to produce a facility running largely on solar power. This will take us way beyond fossil fuels into the kind of world environmentalists imagine, where intermittent solar and wind power are stored to provide the kind of “high-9’s” reliability required by an industrial, digital society. And the key to that will be the same thing that Musk is working on now – batteries.

This kind of convergence is the reason for the number-two rumor of the week – that Tesla and Apple have engaged for a possible collaboration, even a merger. Last week San Francisco Chronicle reporters Thomas Lee and David Baker revealed that Apple’s M&A specialist Adrian Perica met with Musk last spring. What did they talk about?  Obviously a joint venture is in the air. Remarkably, only last October German stock analyst Adnaan Ahmad wrote an open letter to Apple saying it should consider entering the auto business by buying Tesla. The reasoning is as follows:

  • Despite its reputation for cutting-edge products, Apple’s traditional market for personalized devices seems to be reaching its limits. Sales of smart phones and tablets are maturing. Apple’s Next Big Thing is supposed to be a smart watch. A watch?  Is that an appropriate ambition for the world’s most innovative company?  As Steve Jobs did so many times, Apple need to enter an entirely new business and turn it upside down.
  • Apple is sitting on $160 billion in cash. It could literally buy almost any company in the world. Even with a market capitalization that is inflated by high expectations, Tesla is only worth $24 billion. The whole thing is doable.
  • Tesla needs an infusion of cash if it is to break out of its luxury niche and provide a car for the masses. The company’s proposed Gen III would sell for $35,000 and compete with the Chevy Volt and the Ford Focus. But more than half of that cost is in the battery. If Tesla can achieve vertical integration and come up with some new innovations, it may be able to turn a profit. But Apple is in the battery business as well, since most of what’s under the hood in an iPad or iPhone is lithium-ion. There is a convergence taking shape.

Of course there are many things working against this vision. Both Tesla and Apple may deal in lithium-ion batteries but designs aren’t the same and the chemistry is different. Also, when it comes to storing huge amounts of electricity at the factory, lead-acid remains the preferred technology. It’s cheaper in a way that lithium-ion will find if very difficult to duplicate.

Still, there seem to be breakthroughs coming in battery research almost every week. Only two weeks ago, researchers at Harvard announced the invention of a “flow battery” that stores a charge in organic liquids rather than metals. At the University of Limerick, researchers announced the development of a new germanium nanowire-based anode that greatly expands the capacity and lifetime of lithium-ion batteries. And researchers at Stanford said they had developed a silicon anode based on the design of a pomegranate seed that improves lithium-ion storage capacity by a factor of 10. All this is within the space of the last two weeks.

Batteries are hot and Elon Musk will be walking right into the middle of it. He has proved Tesla’s charging system has legs. The first Model S just made the 3,464-mile journey from Los Angeles to New York in 76 hours using Tesla’s new network of supercharger stations. Recharging has been reduced to just over an hour. Model S sales hit 22,500 for 2013, exceeding expectations. With all this success under its belt, the company is preparing to move down-market, where it can really have an impact on our fossil fuel dependence.

Like many Silicon Valley entrepreneurs, Musk is obsessed with space travel. He says he wants to be buried on Mars – “and not on impact.” With Steve Jobs gone, Musk may be the man to take Silicon Valley’s venture into alternative automobile propulsion to the next level.

 

No Sex-Just Smirking; No Lies-Just No Strategic Thinking; No Videotapes- Just Lots Of words And Ideology

According to several well-known writers of blogs and columns, based on a recent study by North Carolina State University, EDV’s (electric cars, hybrids and plug ins) are not all they are cracked up to be. Because they may be powered by a coal or natural gas utilities, they spew pollutants, because hybrids may use gasoline, they emit ghg and other pollutants, because their production processes are “dirty,” they generate more pollutants than gasoline.

Electric cars in China have an overall impact on pollution that could be more harmful to health than gasoline vehicles…  EDVs ghg reduction will not make a big difference because the total number of vehicles in the U.S. only produces about 20 percent of all carbon emissions.”

I have seen higher numbers than stated by the writers concerning carbon emissions by cars and trucks fueled by gasoline. It is not clear whether the North Carolina study compared general supply chains to supply chain specifics. For example, EV engines use a proportionately large share of aluminum. Its mining probably emits more ghg than materials used in non evs. Yet, its use in cars, given its lighter weight, produces less emissions.

More relevant, perhaps, while recently there has been some retreat because of rising natural gas costs compared to coal costs, in the long term future, (perhaps aided by government regulations of carbon emissions,) conversion of coal based power generation to natural gas will  again trend upward and lower the total ghg allocated to EDVs.

The bloggers and columnists as well as the North Carolina scholars seem to believe in the theory that if you build it they will come.  Indeed, the most frequent comments on the models used in the study relate to one model, that is, a 42 percent EDV market share by 2050. It presumes a government cap on emissions.   Apparently, according to this model, any ghg reductions caused by EDVs will soon be filled up by other emitters. According to the study’s author, Joseph DeCarolis, ( interviewed by Will Oremus, a critic of the paper in his article in Future Tense, Jan. 27),   “It’s that there all this other stuff going on in this larger energy system that effects overall emissions.” I would add based on the study, DeCarolis presumes ghg emissions are fungible and equilibrium will result in 2050.

Diminishing the ghg importance of  EDVs ,  more than three decades out,  shifts  issues and initiates arguments over whether or not government should have a tougher cap; whether or not other sectors of the economy will illustrate more or less ghg emissions; whether or not technological advancements focused on ghg reduction across the economy will remain almost static; whether or not businesses will accept ghg reduction as a must or as part of  “conscientious capitalism” both to sustain profits and quality of life.

The continued development and increased sales of edvs are important to the nation’s long term effort to reduce ghg and other pollutants. But, until evs among edvs increase mileage per charge to remove owner fear of stalling out in either remote or congested places like freeways and until the price comes down and size increases for families with children, they will at best constitute a relatively small share of the new market for cars in the  near future. Even if the total numbers of edvs significantly increase their proportion of new car sales, many years will pass before they, will collectively, play a major role in lessening the nation’s carbon footprint.

Perfectibility not perfection should be a legitimate goal for all of us concerned with the environment. Individuals and groups concerned with the economic and social health of the nation should drop their ideological bundling boards. (Some of us are old enough to remember the real origins of the bundling board. Because of a shortage of space in many homes, it was used to separate males and females who often slept together before they were married in revolutionary days. I am not sure it was abandoned because mores changed, houses got bigger or people got splinters. I have no videotapes!)

2014 should witness the development of a non-partisan,non- ideological coalition of environmental, business, non-profit, academic  and government leaders to embrace  the need for an effective transitional alternative fuel strategy for new and existing cars and EDVs.  The embrace should respond to national and local objectives concerning the environment, the economy, and security and consumer well-being.   A good place to start would be to extend the use of natural gas based fuels, including ethanol and methanol.

Simultaneously, the coalition should encourage Detroit to expand production of flex fuel cars and the nation to implement a large scale flex fuel conversion program for existing cars.  Added to the coalition’s agenda should be development of a more open fuels market and support for intense research and development of EDV’s, particularly EVs.  Hopefully, evs will soon be   ready for prime time in the marketplace. Succinctly, we need both alternative fuels and evs.

Can Butanol Be the New Ethanol?

Even as the ethanol industry is wobbling over the Environmental Protection Agency’s decision to cut back on the ethanol mandate in 2014, a new candidate has emerged as an additive to gasoline – butanol.

Virgin Airways founder and CEO Richard Branson has announced that his Virgin Green Fund will be cosponsoring a groundbreaking butanol manufacturing plant in Luverne, Minnesota.  “Butanol is the future of renewable fuel,” said Branson, who is already using renewable jet fuel for his airline.  “It’s hugely versatile and can be used to produce gasoline fuel blends, rubbers, solvents, and plastics, which gives us scope to enter a range of markets,” he said in an interview with Bloomberg.

Corn ethanol now dominates the $26 billion gasoline additive market, drawing the glucose content out of 45 percent of the nation’s corn crop (the protein is fed to animals).  Branson’s butanol would use a similar feedstock – corn, sugar cane or cellulosic biomass – but would produce a fuel that has 84 percent of gasoline’s fuel density compared to ethanol’s 66 percent, although ethanol has a higher octane rating.  The implication is that butanol could be mixed at higher blends, giving it almost the same range as gasoline.

Both butanol and ethanol are made through a process that employs yeasts to ferments the glucose from organic material into alcohols.  Methanol, the simplest alcohol, has one carbon joined to a hydroxyl ion while ethanol has two carbons and butanol has four.  Octane, the principal ingredient in gasoline, has eight carbons without the hydroxyl ion.

As far a butanol is concerned, it’s not as if people haven’t tried this before.  Both BP and Royals Dutch Shell have experimented with producing butanol from organic material but have found the process harder than they anticipated.  “There is certainly a potential, but there have been quite considerable problems with the technology,” Clare Wenner, of the London-based Renewable Energy Association, told Bloomberg.  “It’s taking a lot longer than anybody thought years ago.”

Gevo’s plant in Minnesota, for instance, has been running at only two-thirds of its 18 million gallon-a-year capacity because of a contamination in its yeast fermenting facility in September 2012.  Similar instabilities in the microbial-based process have dogged the efforts to break down cellulose into simple molecules.  There operations can often be performed in the laboratory but become much more difficult when moved up to a commercial scale.

Branson is confident these obstacles can be overcome.  He’s already got Silicon Valley investor Vinod Khosla on board in Gevo and Total, the French oil company, has also taken a stake.  Together they have enlisted big ethanol producers such as Big River Resources and Siouxland Ethanol to commit to switching their manufacturing process to butanol.  Butamax Advanced Biofuel, another Minnesota refiner funded by Dupont and BP, is also in the process of retrofitting its ethanol plant to butanol.  Taken together, these facilities would be able replace 1 billion of the 14 billion gallons of ethanol now being produced every year.

Whether this would be enough to make a bigger dent in America’s oil import budget remains to be seen.  The 14 billion gallons of ethanol currently substitutes for 10 percent of our gasoline and about 6 percent of our total oil consumption.  The Environmental Protection Agency has limited ethanol additives to 15 percent of the blend, mainly to protect older cars.  (In Iowa, newer cars are running on an 85 percent blend.)  Now the reduction in the 2014 mandate is making the ethanol industry nervous about overcapacity.  Butanol is less corrosive of engines and the 16 percent blend could give it an edge.

On another front, T. Boone Pickens’ Clean Energy Fuels announced this week that it may turn a profit for the first time since its founding in 1997.  Clean Fuels is concentrating on supplying compressed natural gas for trucks, signing major contracts with Frito-Lay, Proctor & Gamble, United Parcel Service and Ryder.  It is also attempting to set up a series of filling stations on the Interstate Highway System.  The use of CNG requires an entirely new infrastructure, however, rather than the easy substitution of liquid and butanol.

The dark horse here is methanol, which is liquid and fits easily into our present infrastructure but would be synthesized from natural gas.  Somehow, methanol has not attracted the attention of Branson’s biofuels and Pickens’ CNG.     All of these efforts hold promise, however, and would make a huge dent in our annual $350 billion bill for oil imports, which constitutes the bulk of our $450 billion trade deficit.  So good luck to all and may the best fuel win – or all of them, for that matter.

Oil and Natural Gas Prices and the Future of Alternative Fuels

I love Vivaldi’s Four Seasons, especially the music from the spring. I love the optimistic line from the poem by P.B. Shelley, “if winter comes can spring be far behind.”  The unique cold weather, the Midwest, East Coast and even the South, has been facing this year will soon be over and spring will soon be here. Maybe it will be shorter. Perhaps, as many experts indicate, we will experience a longer summer, because of climate change. But flowers will bloom again; lovers will hold hands without gloves outside, kids will play in the park… and natural gas prices will likely come down to more normal levels than currently reflected.

Last Friday’s natural gas price according to the NY Times was $5.20 per thousand cubic feet. It was “the first time gas had crossed the symbolic $5 threshold in three and half years, although (and this is important) the current price is still roughly a third of the gas price before the 2008 financial crisis and the surge in domestic production since then.”

Why? Most experts lay the blame primarily on the weather and secondarily on low reserves, a slowdown in drilling, and pipeline inadequacies. The major impact so far has been on heating and electricity costs for many American households, particularly low and moderate income households and the shift of some power plants from natural gas back to coal.

I wouldn’t bet more than two McDonald’s sandwiches on where natural gas prices will be in the long term. But I would bet the sandwiches and perhaps a good conversation with a respected, hopefully clairvoyant, natural gas economist-one who has a track record of being reasonably accurate concerning gas prices- that come cherry blossom time in Washington, the price of natural gas will begin to fall relatively slowly and that by early summer, it will hover between 3.75 to 4.25 per thousand cubic feet.

Natural gas prices over the next decade, aided by growing consensus concerning reasonable fracking regulations as reflected in Colorado’s recent regulatory proposals, and EPA’s soon to be announced regulations, should be sufficiently high to reignite modest drilling passions, improvements in infrastructure and increased supplies at costs sufficient to maintain an advantage for natural gas based fuels when compared to oil based fuels at the pump.

The present relatively low price of oil (Bent Crude $107 a barrel; WTI $97.00 a barrel) and its derivative gasoline ($3.30 a gallon) may impact the cost differential between gasoline and natural gas based fuels. But the impact could go both ways. That is, if the price of oil per barrel continues to fall and translate into lower costs for gasoline, the price differences between natural gas based fuels and gasoline would narrow. Conversely, if the price of oil goes lower than $90 a barrel, its present price, it likely will impede future drilling, particularly in high cost, hard to get at environmentally sensitive areas. This fact combine with renewed economic growth in the U.S., Europe and Asia, as well as continued tension in the Middle East and continued speculation could well result in a return to higher gasoline prices.

Clearly, the relationship between the cost of natural gas based fuels (CNG, ethanol and methanol) and gasoline is a critical variable in determining consumer behavior with respect to conversion of existing cars to flex fuel cars and the purchase of new natural gas cars (Based on the national pilot involving 22 states lead by Governor Hickenlooper(D) and Governor Fallin(R), as well as interviews with carmakers, creation of a deep predictable market for CNG fueled vehicles will bring down the price of such cars and give them competitive status with gasoline fueled vehicles).

The odds are that the lower costs of natural gas based fuels will serve as an incentive to buyers and existing owners to use them. That is, assuming problems related to fuel distribution as well as access and misinformation concerning the affect alternative fuels have on engines are resolved by public, non-profit, academic and private sectors. Maybe I will up my bet!

Is E85 the Solution to the Ethanol Debate?

Professor Bruce Babcock, of the Center for Agriculture and Rural Development at Iowa State University, believes he has a simple solution to the corn ethanol mandate problem – encourage people to fill their tank with fuel that is 85 percent ethanol instead of the current 10 percent.

“There may be a few good reason for cutting back on our consumption of corn ethanol,” says Babcock, who holds the Cargill Endowed Chair for Energy Economics. “But the reason the EPA is giving sure isn’t one of them.”

In case you haven’t been following, the Farm Belt is in an uproar over Environmental Protection Agency’s recent decision to cut back on the ethanol mandate from 14.4 billion gallons to somewhere around 13 billion for 2014. Iowa Senator Chuck Grassley blames “special interests” – meaning the oil companies – while Governor Terry Brandstat has talked darkly about a “war on corn.”

But dissatisfaction with the corn ethanol mandate extends well beyond the oil companies and the refineries. In December a coalition of liberals and conservatives – led by California Democrat Diane Feinstein and Oklahoma Republican Tom Coburn – introduced a bill to do away with the corn mandate altogether. “I strongly support requiring a shift to low-carbon advanced biofuel,” said Feinstein, “but corn ethanol mandate is simply bad policy,” “This misguided policy has cost taxpayers billions of dollars, increased fuel prices and made our food more expensive,” added Coburn.  “The time has come to end it.”

What’s the problem?  Well, the mandate – adopted by Congress in 2007 at the behest of President George Bush, Jr. – has fallen out of sync with the “blend wall” – the theoretical 10 percent mark where ethanol starts harming car engines. The mandate pushed up to 14.2 billion gallons last year while gasoline consumption actually dropped to 135 billion gallons last year from 142 billion gallons in 2007, pushing it way past the 10 percent benchmark.

Faced with this dilemma, refiners were forced to buy “credits” in the form of “renewable identification numbers (RINS),” which give them bookkeeping credit for consuming ethanol. But the pressure on the market pushed the price of RINs from pennies per gallon to $1.40 last August, pushing up the price of gasoline. Hence the rebellion and President Obama’s apparent instructions to the EPA to cool it on the mandate for 2014.

Professor Babcock says this is all a result of the artificial barrier limiting ethanol content to 10 percent. “E85 [a blend that is 85 percent ethanol] is selling all over Iowa at 15 percent less than gasoline,” says Babcock, who is originally from southern California. “That actually makes it a little more expensive than gasoline because you only get 80 percent of the energy.  But last August E85 was selling 25 percent below gasoline and it was a bargain.  The notion that cars can’t tolerate mixes of more than 10 percent ethanol is purely fictional.”

The 10 percent blend wall is based on the premise that putting more ethanol in your tank can harm your engine. Several years ago the auto companies have announced they will not honor warrantees on older cars that use more than 10 percent ethanol. The EPA has approved E15 (15 percent ethanol) for cars built after 2001, even doing elaborate tests to prove it could work, but no one has paid much attention. “The automakers say, `We didn’t build those older cars for E15 and we don’t want them running on E15,’” says Babcock.  “As far as they’re concerned, that’s the end of it.”

Without much fanfare, however, both Ford and GM are now manufacturing close to half their cars for “flex-fuel” – capable of burning any mix of gasoline and ethanol – or even possibly methanol, which has not been tested yet. “There’s a little embossed insignia on the back of the car but it’s easy to miss,” says Babcock.  “There are now 17 million flex-fuel cars on the road, although most people who have them don’t even realize it.”

Adjusting older vehicles to flex-fuel isn’t that difficult, either.  On the oldest models, it involves only replacing a few rubber fuel lines with aluminum, which a good mechanic could do it for less than $200 – if it weren’t illegal.  On newer models it requires only an adjustment to the software.  New flex-fuel cars sell for the exact same price as ordinary gasoline vehicles.  “GM has done a really good job of figuring out flex-fuel technology,” says Babcock.  “All their trucks are now designed for it. Chrysler is coming around as well but the Japanese cars have stayed away from it.  They’re putting all their bets of hybrids, hydrogen and electric vehicles.  They’re not at all interested in biofuels.”

Babcock’s proposal, outlined in a paper released earlier this month, is for the EPA to sanction E85 so it can start selling somewhere else besides Iowa, where ethanol remains popular and corn is aplenty. “It just doesn’t make sense to have all the stations concentrated in the Midwest,” says Babcock. “The real place for these cars should be on the East and West Coasts.”

Who would pay for upgrading all these stations to handle E85?  Babcock’s answer is the oil refineries. “The cost would be about $130,000 per station or 20 cents for each additional gallon they could expect to sell,” he says.  “If the price of RINs becomes too high, the refiners will have to do something.  People call me naïve to think they will spend all that money building new pumps but they’re already done it in several instances. I’m not some wide-eyed academic economist.”

But the refineries do have another option and that is to go to Congress and the President and insist that the mandate be lowered – which is what they’ve just done. And with a rebellion against ethanol brewing in the non-farm states, it isn’t likely the mandate will be reinstated any time soon – at least until the Presidential candidates start trooping to Iowa again.  On the other hand, Babcock’s proposal for approving E85 so that the 17 million flex-fuel cars already on the road can start using it makes perfect sense.

At this point, the “blend wall” may more of a mental barrier than a physical one. Once we break through it, ethanol, methanol and a lot of other things become feasible.

Who Says Cars Have to Fill a Parking Space?

You’ve seen them zipping around city streets or squeezed into some illegal-looking space between a normal car and a fire hydrant.  At first you might have thought they were some kind of joke. Who would drive such a thing?  But the new mini-electrics are catching on and may be on the way to revolutionizing urban driving.

There is now a whole menu of them – the Chevrolet Spark, the MINI E, the Toyota IQ, the Fiat 500. Oddly, many of them are available only in California. That seems like a mismatch because they’re obviously better suited for the densely populated cities of the Northeast than California freeways. But those are the vagaries of state incentives and government mandates.

Most of them have a highly limited range.  125 miles is good and some are as low as 75. (A regular gas-powered vehicle can go 400 miles on a full tank.)  But they’re a niche model, obviously suited for running around town and finding a parking space in the vehicle-choked precincts of places like New York City. They can get up to the equivalent of 125 miles per gallon and with some newer accessories don’t take up to seven hours to recharge. Most important, they are getting down into a price range where they are accessible. Leasing prices are impressive (some of them are only available by lease) and with the incentives that the Golden State is offering, people in California can say they are getting a really good deal.

Here’ a list of some of the contenders:

  • Chevrolet Spark.  Originally produced as the Daewood Matiz by GM’s Korean division, the all-electric Spark went on sale in California and Oregon in 2013.  The car is a 146-inch-long four-door hatchback that sells for $27,000.  With a $7,500 federal tax credit and a $2,500 California rebate, however, it comes in at well below $20,000. The Spark can be leased for $199 a month. With an optional connector, it can be charged up to 80 percent in 20 minutes.
  • Fiat 500e.  An electric version of a car that has been sold in Europe since the 1950s, the 500e went on sale in California last year, selling 645 units. Range is barely 100 miles but it gets the equivalent of 116 mpg. The car is priced at $32,000.  Fiat says it will be available in several more states in 2014.
  • Chrysler’s Smart FortwoThe Smart Fortwo is a model that looks like you could fold it up in your back pocket or park it in your living room. Manufactured in France, it is barely eight feet long. It sells everywhere in the United States. Previously built for gasoline and diesel, the new all-electric model sells for only $12,000 and leases for $99 a month. You’re starting to see them more and more on the streets of New York City.
  • Toyota Scion IQPositioned as a direct competitor to the Fortwo, Toyota’s “city car” sold as a 3-cylinder gasoline engine until the electric version was introduced last year.  Estimated range is only 50 miles with a three-hour recharge, so it’s really limited to city driving. The price is high – $35,000 – and right now it’s only available for fleet purchases and car share programs. The first 30 units were bought by the University of California at Irvine.
  • Mitsubishi i-MIEV EV.  Introduced in Japan in 2008 and soon sold almost everywhere but in the United States, the “i” version was finally brought to these shores in 2011, a slightly larger version with some additional features.  The American version has a range of only 62 miles but was ranked by the EPA as the most fuel-efficient car in America until surpassed by the Honda Fit EV in 2012. It sells for $23,000.
  • Honda Fit EVStill only available on a lease basis, the Fit EV goes for $259 a month. Introduced only in California and Oregon in 2011, it is now available in New York, New Jersey, Maryland, Massachusetts, Connecticut and Rhode Island as well. The car only has an 80-mile range but is highly fuel efficient.

Getting people to accept the proposition of driving around city streets in something that looks like it could be sold on the floor of FAO Schwarz, of course, is an entirely different matter. In test driving a city car for The New York Times, Jim Motavalli reports a neighbor commenting, “It’s adorable, but I’m afraid it would be crushed by a Suburban.” The idea of weaving in and out of traffic in what amounts to a tin can is certainly not for everyone. But electric vehicles have lots of torque at the lower end of the spectrum and can be easily maneuvered. Plus if nothing else, they are loaded with safety features.

To anyone familiar with the dense urban streets of Athens or Buenos Aires, city cars would be a familiar sight. And of course the more there are of them, the less dangerous driving becomes. The progress of mini-cars is slow but you’re seeing more and more of them. In the end, they may revolutionize urban driving.