Posts

Redlands to offer CNG /LNG fueling stations in town

Residents and businesses in need of Compressed Natural Gas (CNG) for their vehicles will have an increased ability to fill up in town.

The city has added new Compressed Natural Gas fuel dispensers at its corporate yard to allow up to four alternative fuel vehicles to fill up at the same time.

“There’s not a whole lot of stations around that you can get that fuel source,” said Councilwoman Pat Gilbreath, adding that the availability of the fuel stations give residents more options for the types of vehicles they can purchase.

Compressed Natural Gas is a clean burning alternative fuel that helps reduce carbon emissions and costs less than fossil fuels, according to a city news release.

Read more at: Redlands Daily Facts

Energy Quote of the Day: ‘Natural Gas is Often Described as a Bridge Fuel…How Long Should that Bridge Be?’

A new report released by the Canadian Pembina Institute and the Pacific Institute for Climate Solutions looks at British Columbia’s (B.C.) liquefied natural gas (LNG) strategy to serve the lucrative Asian gas market through the prism of global climate change in a carbon-constrained world. “Natural gas is often described as a bridge fuel. The question is, how long should that bridge be?” says Josha MacNab, B.C. Regional Director for the Pembina Institute.

Read more at: Breaking Energy

Europe says yes to alternative vehicles

Things have always been a little easier in Europe when it comes to saving gas and adopting different kinds of vehicles. The distances are shorter, the roads narrower, and the cities built more for the 19th century than the 21st.

Europeans also have very few oil and gas resources, and have long paid gas taxes that would make Americans shudder. Three to four times what we pay in America is the norm in Europe.

Thus, Europeans have always been famous for their small, fuel-sipping cars. Renault was long famous for its Le Cheval (the horse), an-all grey bag of bones that’s barely powerful enough to shuttle people around Paris. The Citroën, Volkswagen and Audi were all developed in Europe. Ford and GM also produced models that were much smaller than their American counterparts. Gas mileage was fantastic — sometimes reaching the mid-40s. A big American car getting 15 miles per gallon and trying to negotiate the streets of Berlin or Madrid often looked like a river barge that had wandered off course.

More Europeans also opt for diesel engines instead of conventional gasoline — 40 percent by the latest count. The overall energy conversion in a diesel engine is over 50 percent and can cut fuel consumption by 40 percent. But diesel fuel is still a fossil fuel, which have a lot of pollution problems and don’t really offer a long-range solution. So, Europeans decided that it’s time to move on to the next generation.

Last week the European Union laid down new rules that will try to promote the implementation of all kinds of alternative means of transportation, making it easier for car buyers to switch to alternative fuels. The goal is to achieve 10 percent alternative vehicles by 2025 over a wide range of technologies, removing the impediments that are currently slowing the adoption of alternatives. If everything works out, tooling around Paris in an electric vehicle within a few years without suffering the slightest range anxiety would become a reality.

By the end of 2015, each of Europe’s 28 member states will be asked to build at least one recharging point per 10 electric vehicles. Since the U.K. is planning to have 1.55 million electric vehicles. That would require at least 155,000 recharging stations, which is a pretty tall order. But members of the commission are confident it can be done. “We can always call on Elon Musk,” said one official.

For compressed natural gas, the goal is to have one refueling station located every 150 kilometers (93 miles). This gives CNG a comfortable margin for range. With liquefied petroleum (LPG) it will be for one refueling station every 400 kilometers (248 miles). These stations can be further apart because they will mainly be used by long-haul trucks travelling the TEN-T Network, a network of road, water and rail transportation that the Europeans have been working on since 2006.

Interestingly, hydrogen refueling doesn’t get much attention beyond a sufficient number of stations for states that are trying to develop them. There is noticeably less enthusiasm for hydrogen-powered vehicles than is expressed for EVs and gas-powered vehicles. All this indicates how the hydrogen car has become a Japanese trend while not arousing much interest in either Europe or America.

At the same time, Europeans are planning very little in the way of ethanol and other biofuels (they also mandate 20 percent ethanol in fuel). Sweden is very advanced when it comes to flex-fuel cars. They have been getting notably nervous about the misconception that biofuels are competing with food resources around the world — Europe does not have its own land resources to grow corn or sugarcane the way it is being done in the United States and Brazil. Europe imports some ethanol from America but it is also now developing large sugar-cane-to-ethanol areas in West Africa.

Siim Kallas, vice president of the European Commission for TEN-T, told the press the new rules are designed to build up a critical mass of in order to whet investor appetites for these new markets. “Alternative fuels are key to improving the security of energy supply, reducing the impact of transport on the environment and boosting EU competitiveness,” he told Business Week. “With these new rules, the EU provides long-awaited legal certainty for companies to start investing, and the possibility for economies of scale.”

Is there any chance that the public is going to take an interest in all this? Well, one poll in Britain found last week that 65 percent would consider buying an alternative fuel car and 19 percent might do it within the next two years. Within a few years they find the infrastructure ready to meet their needs.

Budweiser trades Clydesdales for natural gas

The famous Clydesdales that have hauled Budweiser’s barrels of beer since the 19th century are finally being replaced by 21st century compressed natural gas-driven vehicles.

Well, it isn’t quite that simple. There’s been an 80-year interval between the 19th and 21st centuries, when Budweiser’s trucks ran on gasoline and diesel fuel. But for 66 trucks at Budweiser’s Houston brewery, the 53-foot trailers loaded with 50,000 pounds are now going to be hauled by trailers running on compressed natural gas.

Anheuser-Busch actually has plans to convert its entire fleet to natural gas, according to James Sembrot, senior transportation director. “It’s significant that A-B feels comfortable swapping for an entire fleet that runs on CNG,” Christopher Helman wrote in Forbes. According to Sembrot, “the intention of shifting to natgas…is to reduce carbon emissions and fuel costs, while doing something green(ish).”

“The Houston brewery is among the biggest of the 14 that A-B operates nationwide. The closest breweries to this one are in Fort Collins, Colo., and St. Louis. Each truck rolls virtually around the clock — traveling in an average of 140,000 miles in a single year hauling beer to wholesalers. They move 17 million barrels of beer each year.” That’s a lot of beer running on natural gas.

Actually, it’s not Anheuser-Busch that is taking the initiative on Budweiser. The natural gas vehicles are being made available through Ryder, the nation’s largest trucking company since merging with Budget Truck Rental in 2002. Budget now has 2,800 businesses and 132,000 trucks around the country. Although only a small percentage run on natural gas, the company is dedicated to converting its fleet with all due dispatch, and the savings may prove to be extraordinary. According to Helman, “Sembrot tells me that the old trucks were getting 6.2 miles per gallon of diesel and running 140,000 miles per year. That equates to 1.45 million gallons of diesel to go 9.2 million miles. At about $3.80 per gallon, that’s roughly $5.5 million in total diesel costs per year. If they save about 30 percent per ‘gallon equivalent’ when buying CNG, that’s a savings of about $1.65 million per year.” That’s a lot of money save for switching to natural gas.

But it’s not just Budweiser and Ryder and a few forward-looking companies that are pushing ahead with natural-gas vehicles. The whole state of Texas seems to have gotten the bug. The Lone Star State now has 106 CNG filling stations, the most in the country. Forty are them are open to the public, while the others are fleet vehicles where vehicles from Anheuser-Busch and Ryder can fill up. Actually, far ahead of these innovators are FedEx and UPS, which have not converted their fleets for many years. And hovering in the background is T. Boone Pickens and his “hydrogen highway,” which is installing huge natural gas depots at key truck stops along the Interstate system. Much of this is aimed at Texas and the first complete link has joined San Diego to Austin in a seamless string of stations that will allow tractor-trailers to make the whole trip on natural gas.

All this has done wonders for Texas tax collections. At the start of the year, the Texas Controller’ Office was anticipating revenues less than $ million from excise taxes. Yet by July 31, 2014, collections were 220 times of that anticipated, and the Texas Controller’s office had collected $2,178,199. “These collections are more than double the estimated amount,” said David Porter, Texas Railroad Commissioner. “At 15 cents per gallon equivalent, $2 of motor fuels tax equals sales of 14,521,326 gallon equivalents of natural gas.”

Texas may be famous for fracking and producing more oil than Iraq, but they do not hesitate to look for new uses for gas and oil as well.

 

Photo by by Paul Keleher from Mass, US.

Self-driving cars

It seems like a kind of Hollywood fantasy — autonomous little roadsters scooting in and out of traffic, breathlessly avoiding collisions and getting to their destination before anyone else.

Then again, it seems like the inevitable. If computers can perform medical diagnoses, accomplish instant translations for tourists and power Martian rovers, what’s so complicated about driving a car?

The self-driving car has gotten a lot of publicity lately. Google has a demonstration project and there have been the usual speculations about how long before self-drivers become a common sight. Four states have passed legislation allowing their operation and this month self-driving cars received the ultimate accolade of any new technology by being opposed by the Ralph Nader’s Consumer Watchdog, thereby joining fracking, nuclear power, GMO foods and other technological advances as being opposed by the Naderites.

Yet in truth, the idea of self-driving vehicles has been around for a long, long time. Experiments go back as far back as the 1920s. Engineers tried burying electric cables beneath the road to send signals that would keep cars on track. With the development of computers, however, research switched to autonomous vehicles with a dozen auto manufacturers and universities doing serious work.

In 1995, Carnegie Mellon University built an autonomous vehicle that traveled 3,100 miles cross-country for the “No Hands Across America” tour, with only minimal human intervention. In 2005, a Google vehicle equipped with 3D cameras, radar and a software package called Google Chauffeur won a $2 million prize in a Grand Challenge sponsored by the U.S. Department of Defense. In 2010, four self-driving vehicles designed at the University of Parma, Italy duplicated Marco Polo’s expedition by driving from Italy to China with only occasional intervention by their human drivers. Google’s fleet of a dozen self-driving cars has now logged 700,000 miles on public highways without experiencing any trouble. The only accident occurred when one of them was read-ended by another vehicle at a traffic light.

Indeed, as things stand now, the biggest obstacle to widespread adoption may be the predictable human reluctance to have the wheel taken out of their hands. One poll in Germany found that while 22 percent of respondents had a positive attitude toward driverless cars, 44 percent were skeptical and 24 percent were actively hostile toward the idea.

So aside from inspiring a hundred high school science projects and proving that computer geeks can do just about anything, what would be the advantage of self-driving vehicles? Here are a few of the possibilities:

Greater fuel efficiency: Advocates say that the precision achieved by automated vehicles in evening out traffic flows would cut down on national gasoline consumption. Instead of some cars dawdling in the fast lane while others weave in and out, traffic would follow a much more orderly pattern. Estimates are that a large fleet of self-driving vehicles could cut national fuel consumption by as much as 10 percent.

The advance of non-gasoline fuel systems: Since the experiments with trolley-like electronic tracks of the 1920s, self-driving systems have been associated with electric cars. While it will be perfectly possible to mount self-driving equipment on a gasoline-powered car, the “wave of the future” seems to be associated with non-gasoline vehicles. Google’s self-driver runs on electricity as do nearly all other experimental models.

Fewer accidents: Although humans may be reluctant to admit it, the vast majority of accidents are caused by driver error. The 360-degree visibility and unblinking vigilance of self-drivers could be a vast improvement. Many new cars are already beginning to incorporate some of the features with rear-view cameras and automatic braking. The 2014 Mercedes S-class offers options for self-parking, automatic accident avoidance and driver fatigue detection. One website that projects the self-driving future even suggests that the main job losses would be among: 1) hospital emergency room services, 2) auto repair shops and 3) trial lawyers specializing in auto accidents!

Peer-to-peer sharing of traffic information: The end point of self-driving would be a peer-to-peer information-sharing system whereby individual vehicles would be warned of congestion and traffic tie-ups and routed away from them. A 2010 study conducted by the National Highway Traffic Safety Administration projected that an amazing 80 percent of all traffic accidents could be avoided by such a peer-to-peer system that smooth out traffic patterns and prevent cars from bumping into each other on congested highways.

More efficient traffic lights: How much time and gas is wasted by cars waiting for the light to change when no cars are coming in the crossing lane? Computerized systems linked to self-drivers could do wonders to hasten traffic flow and ease the time needlessly spent waiting for red lights.

Driving services for people who cannot drive: Many elderly and handicapped people cannot drive under ordinary circumstances, but could manage a vehicle in which they program it to tell it where they want to go. One of Google’s first early adapters was Steve Mahan, a California resident who is legally blind. This YouTube video shows him running a series of errands through his neighborhood, including a visit to a drive-in taco stand. All this might seem that it would increase driving and add to the nation’s fuel consumption until you consider that many of these people are already serviced by elaborate jitney systems that spend a great deal of time making empty runs. Once again, self-drivers would add precision and efficiency to the system.

Mass public transit  the possibility of a whole new personal mobility system: At the end point of this new technology is the vision of a whole new transportation system where far fewer vehicles would be needed to get people where they want to go. Driving this vision is the statistic that the average car is parked 90 percent of the time. If these vehicles could be put to more efficient use — something along the lines of bike-sharing on city streets  then the need for vehicles might be drastically reduced. Particularly in urban settings, more efficient matching of vehicles and passengers would cut down on the need for street parking. Uber, the San Francisco company that matches passengers with drivers of vehicles for hire, is now operating in 200 cities in 42 countries around the globe. The fuel savings it creates through matching efficiency are phenomenal.

Much of the fruits of these innovations are still in the future, but don’t put it past innovators like Google to make it happen quickly. In 2012 the Nevada Department of Motor Vehicles issued the country’s first license to a Toyota Prius modified with Google technology. Florida and Michigan have also issued permits for road testing. Next January, Google will launch 200 gumdrop-shaped vehicles completely void of steering wheel, brake and gas pedal that will begin cruising the streets of Mountain View, Calif., in an experiment supervised by the California DMV.

The future may be closer than we think.

The game of checkers and corn-based ethanol

Recent news concerning the use of corn waste or residual products to create commercially viable ethanol reminds me of a game of checkers. One jump forward, one jump backward, one move sideways. Depending how smart, bored or prone to crying the players are, the game often results in either a stalemate or a glorious victory, particularly glorious when it’s your grandson or granddaughter.

The good news! The American-owned POET and the Dutch-owned Royal DSM opened the first facility in Iowa that produces cellulosic ethanol from corn waste (not your favorite corn on the cob), only the second in the U.S. to commercially produce cellulosic ethanol from agricultural waste, according to James Stafford’s recent article in OilPrice.com (Sept. 5).

The new owners jumped (note the analogy to checkers…my readers are bright) with joy. They announced, perhaps, a bit prematurely, that the joint project, called Project LIBERTY, is the “first step in transforming our economy, our environment and our national security.” After their press release, quick, generally positive, comments came from electric and hydrogen fuel makers, CNG producers, advocates of natural gas-based ethanol and a whole host of other replacement fuel enthusiasts. The comments reflected the high hopes and dreams of leaders of public interest groups, some in the business community, several think tanks and many in the government who see transitional replacement fuels reducing U.S. dependency on oil and simultaneously improving the economy and environment. Several were fuel agnostic as long as increased competition at the pump offered a range of fuels at lower costs to consumers and reduced environmental harm to the nation.

Ethanol from corn waste, if the conversion could be made easily and if it resulted in less costs than gasoline, would mute tension between those who argue that use of corn for ethanol would limit food supplies and provide consumers a good deal, cost wise. The cowboys and the farmers might even eat the same table. (Sorry, Mr. Hammerstein.)

Life is never easy. Generally, when a replacement fuel seems to offer competition to gasoline, the API (American Petroleum Institute — supported by the oil industry) immediately tries to check the advocates of replacement fuel. The association didn’t disappoint. It made a clever jump of its own with a confusing move…sort of a bait and switch move.

API’s check and jump is reflected in their quote to Scientific American. It indicated, in holier-than-thou tones, “API supports the use of advanced biofuels, including cellulosic biofuels, once they are commercially viable and in demand by consumers. But EPA must end mandates for these fuels that don’t even exist.” Wow, how subtle. API supports and then denies!

What a bunch of hokum! Given their back-handed endorsement of advanced biofuels, would API and its supporters among oil companies agree to end their unneeded government tax subsidies simultaneously with EPA’s reductions or ending of mandates? Would API and its supporters agree to add provisions to franchise agreements that would allow gas station owners or managers to locate ethanol from cellulosic biofuels in a central visible pump? Would API work with advocates of replacement fuels to open up the gas market to replacement fuels and competition? Would API agree to a collaborative study of the impact of corn-based residue as the primers of ethanol with supporters of residue derived ethanol, a study including refereed, independent evaluators, and abide by the results? If you answer no to all of these questions, you would be right. API, in effect, is clearly trying to jump supporters of corn-based residual ethanol and block them from producing and marketing their product. Conversely, if you believe the answer is yes to one or more of the questions, you will wait a long time for anything to happen and I will offer to sell you the Golden Gate Bridge and more.

The advocates and producers of cellulosic-based ethanol from corn waste (next move) were suggested by overheard advisors to API. These advisors from the oil industry cheered API’s last move and noted that a recent study in Nature Climate Change, a respected peer-reviewed journal, suggested that biofuels made from corn residue emit 7 percent more greenhouse gases in early years than gasoline and does not meet current energy laws. They wanted checkerboard pieces held by advocates of corn residue off the policy board.

Oh, but the supporters are wise! They don’t give in right away. They pointed to an EPA analysis which indicates that using corn residue to secure ethanol meets existing energy laws and probably produces much, much less carbon than gasoline. Studies like the one reported in Nature Climate Change do not, according to an EPA spokesperson, report on lifecycle changes in an adequate way — from pre-planting, through production, blending, distribution, retailing produce and use. Moreover, a recent analysis funded by DuPont — soon to open a new cellulosic residue to ethanol facility — indicates that using corn residue to produce ethanol will be 100 percent better than gasoline, concerning GHG emissions. (Supporters were a bit hesitant about shouting out DuPont’s involvement in funding the study. It is a chemical company with a mixed environmental record. But after review, supporters indicated it seemed like a decent analysis.)

The response of supporters and its intensity caused API and its advisors to withdraw their insistence, that the checkers of the advocates of corn based residue derived ethanol come of the board. Instead, they asked for a two-hour break in the game. The residue folks were scared. “API was a devious group. What were they up too?”

When the game started again, both supporters and opponents pulled out lots of competing studies, before they made their moves. The only things they agreed on was that the extent of land use devoted to corn, combined with the way farmers manage the soil and the residue, likely would significantly affect GHG emissions. Keeping a strategic amount of residual on the soil would help reduce emissions.

Supporters of corn-based residue argued for a quick collaborative study that might help bridge the analysis gap. But they wanted a bonafide commitment from API that if corn-based residual, derived ethanol, proved better than gasoline, it would support it as a transitional replacement fuel. No soap! The game ended in a stalemate.

Based on talking to experts and surveying much of the literature, I believe that the fictional checkers game tilts toward corn residual derived ethanol, assuming significant attention is granted by farmers to management of the soil and the residue. Whether corn residual-based ethanol becomes competitive as a transitional replacement fuel will be based mostly on farmer intelligence, consumer and political acceptance and a set of even playing field regulations. It, as well as natural gas-based ethanol, as I have written in previous columns, are worthy of a set of demonstration efforts. The nation will have an extended wait until electric and hybrid cars make a big dent regarding the share of the total number of cars in America. We have a moral obligation to do the best we know how to do to lower GHG emissions and other pollutants. We shouldn’t let the almost perfect in our future reduce the possible good now.

Bipolar, manic depressive and natural gas

Although a bit bipolar concerning the data, the editors of Real Clear Energy published a useful graph and narrative on Tuesday. It showed the slow, steady increase of natural gas use in the U.S. over the past few years. The graph and narrative noted a 33% increase in vehicle fuel consumption since 2007. More good news for those who support natural gas, given its ability to reduce GHG emissions: the editors reported that the T. Boone Pickens’ “Natural Gas Highway” appears to offer hope that the trend will continue upward. Indeed, the EIA indicates that natural gas will increasingly substitute for gasoline in the truck, bus and rail freight sectors. So much good news! However, don’t open the champagne yet!

Now the bad news! Despite the increasing popularity of natural gas, over the next 25 years, the editors suggest it will only replace or displace 3% of the nation’s oil budget. What a bummer! But, paraphrasing Frank Sinatra (the noted oil man turned singer), when you have “your chin on the ground, there’s a lot to be learned, so look around… [we’ve] got high hopes…all problems just a toy balloon, they’ll be bursted soon, they’re just bound to go pop”…cause we’ve got high hopes.

Thanks Frank. Now, back to the editors. They correctly advised their readers that we, as a nation, will “never make any real progress until we start using liquid methanol and ethanol in regular passenger cars.” I assume the editors mean that we should increase the amount of ethanol in our cars. All of us now use at least 10% ethanol when we fill-er-up. Some of us, if we are lucky and have a flex-fuel vehicle (over 17 million of us do, but likely don’t know it), can use E15 and E85, assuming we can find a station with the necessary pumps. With the exception of a few states, such pumps are relatively few and far between. Sales of E15 and E85 constitute only a small share of the fuel market.

Why? Neither ethanol not methanol is a perfect fuel. Yet, study after study indicates that, on most dimensions, they are better than gasoline. Both are cheaper, both are generally environmentally superior and both emit less GHG emissions. Competition with gasoline from both would allow the U.S. to become less dependent on oil imports and add to our nation’s security. Over time, opening fuel markets to consumers by adding choice would likely help stabilize, and even reduce, the price of gasoline and limit its frequent nonstructural cycles.

As a former dean of a major School of Public Policy, I would gladly supervise a Ph.D. thesis or an “independent” student study concerning consumer decisions relative to the purchase of gasoline vs. replacement fuels, particularly ethanol and the acquisition of new or the conversion of existing cars to FFV status. The student could start off with some reasonable, contextual assumptions and/or hypotheses. For example:

1. Consumer decisions about alternative fuels often must be speculative, given the fact that oil companies, most times, prohibit their franchises from adding a replacement fuel pump or require them to put the pump in a hidden sidebar location.

2. There are sufficient anecdotes that price management is also a barrier to the development of competitive fuel markets. Data descriptive of the life cycle of ethanol suggests that costs for production, distribution and sales would permit ethanol to compete well, price-wise, with gas. However, anecdotes suggest that producers, distributors, blenders and retail stations — including independent stations — often raise or lower the price of gasoline relative to replacement fuels, which often impedes real consumer choice. There are no angels here. Retail stations carrying E85 have been known to raise its price to capture extra revenue.

3. Although the gap is narrowing in light of technological improvements, replacement fuels, including ethanol, get less mileage per gallon than gasoline. But, as noted earlier, the costs at the pump, if recognized in the price per gallon, generally work out in favor of ethanol. However, consumers find the calculations difficult to make without the addition of simple signs at the pump, a willing and patient station attendant, or an app in your hand. As a rule of thumb, replacement fuels should be at least 22% cheaper than gasoline to cement the deal for a knowledgeable consumer.

4. Despite EPA studies and approvals to the contrary, groups mainly associated with, supported by or historically favorable to the oil industry have planted the worry seed in car owners’ minds. E15 and, likely E85, they say, will damage engines that are actually built to use both. Saying it often enough has likely made many consumers consciously or subconsciously avoid replacement fuels like ethanol. The best answer to bad speech — whether written or oral — is good speech. Yet, only a handful of writers, editors, TV and cable anchors have responded to negative stories and rumors about replacement fuel safety.

I could go on. But I am over my word limit. Thank you, Real Clear Energy, for making me manic depressive — my friends would say it’s a rather normal state. I hope the brief comments by your editors will be discussed over and over again by others and stimulate strategies to increase the use of natural gas based ethanol, and someday soon, the legalization of methanol.

What the world needs now is land (and honesty) to get to replacement fuels

I had the good fortune to meet and work a bit with Dr. Edwin Land, the inventor of the Polaroid camera. We were both on an informal poverty task force created by President Kennedy. I always admired Land. Throughout his life, his comments were always thought-provoking. His suggestion that “politeness is the poison of collaboration” really challenged, and continues to challenge, many of the facilitation and leadership gurus and practitioners who sometimes seem to have invented linguistic anti-depressants. Translated: don’t get angry, hold your tongue, mind your manners, mute some of your views or make them sound less critical, try to be nice and likeable, move toward a win-win situation, compromise and, if you get intense, take a break and go out for a while. Have a beer?

Times have changed, but only a bit, since Land died in the early nineties. Many participants still go into a collaborative and/or facilitative policy process with squeamishness about being direct and honest about their concerns. Because of this fact, it takes many sessions, rather than a few, to get real, difficult issues on the table and achieve a real meaningful and honest dialogue. Bonding and game playing (real and surreal) are often seen as more important than advocacy as well as early substantive dialogue. There is often little chance to compromise because the people at the table compromise their own views before they speak. They want to be polite. We don’t really know what they really think. Building collaboration in the hands of a facilitherapist (my own word), is regrettably, at times, using everyone’s favorite term, an existential threat. It makes collaborative victories, frequently short-term ones, in light of the fact that underlying disputes and tension were not given an airing.

With this as context, let’s look at key policy and behavioral issues now confronting the nation, concerning the harmful link between gasoline, the economy and social welfare, and the environment, particularly greenhouse gas (GHG) emissions and other pollutants. As relevant, let’s also think about why it’s been so tough to move toward replacement fuels for gasoline, even though such options would benefit consumers and the nation.

Gasoline now fuels approximately 250,000,000 vehicles in the U.S. While GHG emissions from gasoline are down because of improved technology in vehicles, gas still generally spews more GHG than alternative fuels such as ethanol, methanol, electricity or fuel cells. Gasoline also fails health and well- being tests when measured against a range of other pollutants, including NOx and VOCs (volatile organic compounds). Gasoline prices, while seemingly low (only) compared to the recent past, in some cases remain higher than alternative fuels, by a significant amount, whether based on renewables or fossil fuel. In this context, most of you reading this column are neither poor nor near poor. Imagine though, that you are, and in order to work, you need find housing at a reasonable cost relatively close to your job, see a doctor or take your family to see an aunt or uncle. But if you secure these and other basics, you have fewer choices since you have to spend from between 10-15 percent of your meager income on fuel. This is a verity now for most low- and moderate-income households. Indeed, based on EIA projections of gas prices and conservative as well as liberal economists conclusions concerning job growth and income, the percentages, likely, will increase in the future. If you were a person of very limited means, what would you limit first: travel to and from work, decent housing, health care or food, etc.?

Now, none of the replacement fuels are perfect. Most, including those based on or derived from fossil fuels such as natural gas, do emit some measurable GHG and other pollutants. This includes electric cars, particularly those that do secure their power from coal-fired electric utilities. But all are better than gasoline on environmental, economic and social welfare indices.

Why then is there not a clear movement toward transitional replacement fuels? Sure, electric car sales and CNG sales are up and hydro fuels will soon be on the market. Hopefully, they all will succeed in attracting consumers. But right now, all three together constitute from 1.5 to 3 percent of sales of new cars.

Why? Well, electric cars, CNG and hydrogen fuel cars are expensive and out of reach for many American households. For some, particularly those who purchase lower-end electric cars, the miles per charge often create road fear on the part of drivers. “What if I get stuck on the L.A. freeway?” Fuel stations are few and often far between for both electric, CNG and hydrogen fuel.

New electric, CNG or hydrogen fueled cars, at least for the near future, will illustrate for us all the comparative purchasing power of the haves, the have nots and the almost haves. Hopefully someday soon, most Americans will be able to compete — price, technology and design wise — for larger shares of the automobile market. But even if they become competitive, they will not be able to generate a major dent in the number of existing vehicles that rely on the internal combustion engine for a long time. Look at the data yourselves! Given their predicted annual sales, how many years would it take before the fleet of privately owned vehicles contained a very large percentage of electric, CNG, or hydrogen fueled vehicles (perhaps as much as 50 to 75 percent or more)? I have seen figures ranging up to almost several decades from respected analysts . Clearly, if sales of hybrid and plug-in vehicles are counted in the totals, the amount of time, it takes will be lower. However, achievement of a proportionately large share of the total number of cars will still extend out a many many years.

What can we do to achieve legitimate important national objectives concerning the environment, the economy and consumer costs for vehicles and fuel almost immediately? We can move to expand the number of FFVs (flex-fuel vehicles) in the country, first, by encouraging Detroit to build more each year and second, by asking public, nonprofit and private sectors to work together with the EPA to certify more conversion kits as well as existing in-use cars for conversion to FFV status. The net results would be vehicles able to use much higher percentages of ethanol (E85) derived from natural gas or from corn cobs, husks and stalks as well as other biofuels.

The proposed strategy is a transitional one. Clearly, electric, CNG and hydro fueled cars, when able to meet market tests concerning consumer needs, should join the mix of choices at the pump. I am optimistic. For example, twenty two states led by Colorado and Oklahoma have agreed to use CNG fueled cars to replace older cars retired from their state’s fleets. Detroit with the pool of CNG cars purchased by the states has agreed make best efforts to develop a lower cost CNG vehicle. Electric cars are coming down in costs. Hydro fueled cars will likely be produced in larger numbers soon and technology over time will reduce vehicle prices.

Now back to Edwin Land. I believe his comments about politeness, perhaps a bit too absolute, reflect his and my own views that the ground rules for collaborative efforts and consensus building may impede honesty concerning discussions of difficult topics. Being polite sometimes circumscribes and weakens important strategic dialogue. Involved participants fear being direct and sometimes avoid linking their intense feelings to their commentary. They try to avoid criticism or be seen as breaking the mythology of togetherness concerning long-term objectives and initiatives. Indeed, both objectives and initiatives are often so long term, that they are vague and don’t really matter to folks at the table. So why not go along? Individuals either avoid saying things that might lead to even temporary policy, program or behavior conflict and debate.

Politeness, certainly, is generally a virtue in most circumstances. Perhaps Land went too far in his choice of words. But the term, if used to guide collaborative efforts, often serves to mask real disagreements and necessarily blunt conversation. I have done lots of facilitative sessions on policy issues between senior officials of different nations and the U.S., as well as between community leaders on education, growth, environmental, race and poverty issues. Maybe the difference is miniscule, but I like the term being “civil” rather than being “polite;” the former presumes disagreement and allows for willingness to entertain tough dialogue and the possibility that the dialogue might step, at times, on intellectual toes; the latter, when translated into behavior, often suggests a willingness to skirt conflicts regarding ideas, if it temporarily reduces the ambience at the table.

Leaders from all sectors need to help build a collaborative “coalition of the willing” among environmental, public interest, government, private sector, nonprofit and academic leaders to push for flex fuel cars and replacement fuels. The criteria for coalition selection should be relevance to the policy and political issues related to gaining the public’s access to multiple fuel choices at the pump and to secure a much larger number of new FFVs as well as existing vehicles converted to FFV status. Identification and selection should not be limited to leaders who think exactly like us. But both should be limited to individuals who care about the environment, the economic and job growth of this nation, the well-being of consumers, particularly low- and moderate-income consumers and, although not discussed above, the security of this nation and the world. Claims of absolute wisdom should be a non starter for membership.

I suspect if the leadership group is diverse enough and if reasonable ground rules concerning structure and processes are set at the outset (ones that encourage substantive dialogue and debate ), disagreements can be bridged based on the data and agreements reached on transitional replacement fuel strategies that would influence public and private sector decision makers. A good facilitator would be needed, one weaned on policy and strategy more than psychology. A nationally respected foundation, or possibly even EPA, could either support or indeed facilitate the proposed serious exercise in collaboration and democracy. Civility, not politeness, should be a principle governing the dialogue.

U.S. Natural Gas Export Boom Quietly Begins

While many are breathlessly waiting for liquefied natural gas (LNG) exports from the United States to begin in 2015, there’s a natural gas export boom already happening right under the noses of most investors. I’m talking about rapidly growing gas exports from the United States to our southern neighbor, Mexico. LNG exports, which are travelling via pipeline, are at their highest levels ever and growing.