Posts

Outnumbered 100-to-1, Methanol Is Upbeat

“Why is it that we hear every day some new story about Elon Musk’s electric car, about Clean Energy Fuel’s efforts to build a CNG highway, or about some laboratory breakthrough that is at last going to bring us cellulosic ethanol, yet with methanol now cheaper than gasoline, you still never hear anything about it?”

That’s the question I posed to the three-member panel while serving as moderator for the wrap-up session at the 2014 Methanol Policy Forum in Washington last week.  The sponsors were the Methanol Institute, the Institute for the Analysis of Global Security (IAGS) and the Energy Security Council.

Anne Korin, co-director of IAGS, who earlier had moderated an even bigger panel that included former U.S. Senator J. Bennett Johnston, former National Security Advisor Robert McFarlane and former Ambassador to the European Union Boyden Gray, had a very unusual answer.  “If I may be permitted to be a bit cynical here,” she said, “I think the reason may be because methanol doesn’t require any subsidies.”  The implication, of course, is that those who come to Washington begging for money receive a lot more attention from Senators and Congressmen than those who don’t.

The question of politics versus economics had been raised at the outset of the daylong conference by Korin’s co-director at IAGS, Gal Luft, in his opening remarks.  “We’ve all heard this business about the circular firing squad and how the various alternatives to foreign oil shouldn’t be fighting each other,” he told the audience of about 400.  “But you have to acknowledge the importance of what goes on in Washington.  You can’t just talk about production you need money.  If you’re not at the table, that means you’re probably on the menu.

Luft showed a chart illustrating that while corn ethanol production exceeds methanol production by a factor of only 5-to-1 (14 billion gallons/year as compared with 2 bg/yr), the amount of money spent lobbying for ethanol is 50-to-1 (less than $100,000 vs. $5 million).  “When you add in the politics of the farm belt, it’s probably closer to 100-to-1,” he added.

So was anyone discouraged?  Not at all.  The news from industry executives is that methanol production is ramping up everywhere due to the bonanza of the fracking revolution.  It seems like only a matter of time before the idea of replacing large portions of our fuel imports with domestically produced methanol begins to command attention.

“In the past decade we closed down five methanol plants in the U.S. and moved them all to China,” John Floren, CEO of Methenex told the gathering of 400 at the Capital Hilton.  “The price of gas had become just too high.  Now we’ve moved two plants back from Chile and are looking at a third relocation.  We’ve got 1000 people working on our Louisiana site.  The chemical industry is starting to build as well.”

Tim Vail, the CEO of G2X, another methanol producer, had a similar take.  “The U.S. is a great place to invest right now,” he told the audience.  “The argument was always that you had to go to the ends of the earth to build methanol plants because that gas wasn’t available here.  Now all that has changed.  Our big worry is labor shortages but the construction industry is responding to our needs.  It takes away a lot of anxiety about having your assets appropriated by other countries.  China may seem like a good place to invest, but can you really trust the rule of law?”

Philip Lewis, chief technology officer of Zero Emission Energy Plants (ZEEP) was equally upbeat.  “I think the whole shale thing is being underestimated,” he said at the close of the morning session.  “It’s another industrial revolution.  And it won’t happen anywhere else because we have the thing that makes it work – private ownership of the resource.  In France, the government owns all the mineral rights and no one wants drilling on their land.”

But governments do have control over other things in this country and there was some questioning of whether federal agencies will be receptive to methanol as a fuel substitute or additive.  Matt Brusstar, deputy director of the EPA’s National Vehicle and Fuel Emissions Laboratory, claimed that his agency had been in the lead of methanol development for 30 years.  “Charlie Grady, who was in our department, was a big supporter of methanol,” said Brusstar.  “He even wrote a book about it.”  (Unfortunately, a Google search for Charlie Grady and methanol turns up no mention of Grady or his book.)  Patrick Davis, the director of the Fuel Cell Technologies Office in the Department of Energy, was even less encouraging.  “The Office of Science does not currently have any projects to create methanol as an end fuel,” he said.  “It could take a decade to sell enough methanol-compatible vehicles before a widespread distribution network would be feasible.”

When I queried Brusstar about Robert Zubrin’s documentation of the multi-thousand-dollar fines that the EPA is imposing for unauthorized conversions of engines to methanol, [See “Making the Case for Mars and Methanol,” Feb. 11] several government officials, plus Fuel Freedom Foundation director of research Mike Jackson, argued that faulty conversions can increase air pollution.

Despite the notable lack of enthusiasm from government agencies, however, there was a strong sense among the rank-and-file that methanol may be about to find a place in the sun.  “This is a much bigger crowd than we’ve ever had,” said one veteran of previous conferences.  “It’s a very exciting time for methanol.”

 

 

 

 

 

 

 

 

 

 

 

 

 

Can New Catalysts Turn the Corner for Methanol?

The concept of converting our abundant natural gas supplies into liquid methanol in order to replace oil in our gas tanks has had trouble gaining traction for several reasons, all of which are about to face change.

The first reason is that most of the attention towards additives has been focused on ethanol made from corn. Driven by highly specific government mandates, corn ethanol — which now consumes 45 percent of the country’s corn crop — has taken up whatever role industrial methanol might have been chosen to play as a gasoline additive.

Secondly, there’s the problem of the Environmental Protection Agency. Not only has the EPA not approved methanol for gas tanks, the organization actually imposes huge fines on anyone who converts a gasoline engine to methanol without its permission.

The third, and less distinguishable explanation for methanol’s difficult implementation, is that the whole idea has never been very sexy. Methanol has little to do with the “Cutting Edge” or the “New Age Economy.” The manufacturing of methanol is a 60-year-old process practiced doggedly by dozens of industrial facilities around the world. They produce 33 billion gallons a year at the reasonable price of $1.50 per gallon; the energy equivalent of $2.35 gas. Meanwhile, Elon Musk seems to announce a new milestone for the Tesla, or some “breakthrough” in battery technology or cellulosic ethanol emerging from the university laboratories each week, making methanol appear rather plain-Jane and old fashioned. In effect, the solution to our gas tank woes has been hiding before us in plain sight.

Now an announcement from the Scripps Howard Research Institute and Brigham Young University may change everything. In a paper published last week in Science, a team led by Roy Periana of the Scripps Florida Center and Professor Daniel Ess of Brigham Young University say they have found catalysts made from the common elements of lead and thallium that facilitate the conversion of gaseous methane to liquid methanol, potentially making the process even cheaper and more accessible.

The hydrogen bonds in the alkanes (methane, ethane, propane, etc) are among the strongest in nature. To break them involves a heat-driven process invented in the 1940s that is conducted at 900 degrees Celsius. For more than two decades, the Scripps team has been looking for catalysts that would shorten this heat requirement. In the 1990s they came up with a series of catalysts employing platinum, palladium, rhodium and gold, but quickly realized that these elements were too rare and expensive for commercial application. So it was back to the drawing boards in search of something more useful.

Last week in Science they reported success:

The electrophilic main-group cations thallium and lead stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent.
The process reduces the heat requirement to only 200 degrees Celsius, which introduces enormous potential for energy savings. That “one-pot” notation is also crucial. Methane, ethane and propane all come out of the Earth together in natural gas. Currently, they must be separated before the heat-driven process can begin, With the new catalysts, no separation will be necessary. This means that methanol could become significantly cheaper to harvest than it already is. More importantly, these findings signify that methanol conversion will be able to weather the inevitable price increases that will result as demand for natural gas supplies multiplies.

Periana says the process is three years from commercialization. Reports Chemical & Engineering News:
The team is in discussion with several companies and entrepreneurs and would ideally like to jointly develop the technology with a petrochemical company or spin off a startup.

Periana also claims that “Initial targets would be higher-value, lower-volume commodity chemicals such as propylene glycol or isopropyl alcohol directly from propane.” He told reporter Stephen Ritter:

The next target could be to develop lower-temperature processes for higher-volume chemicals, such as converting methane to methanol and ethane to ethanol or ethylene as inexpensive sources for fuels and plastics.

An enormous portion of the world’s energy consumption is still tethered to oil, particularly the transportation sector, where oil constitutes 80 percent of consumption. As oil becomes more and more difficult to find, natural gas use is escalating. In addition, 25 percent of the world’s gas is still flared off because it has been uneconomical to capture. All this could change rapidly if a low-cost conversion to methanol becomes a reality. Reuters grasped the implications of this development when it reported that the new catalytic processes “could lead to natural gas products displacing oil products in the future.”

Can Sochi Lead To A New Alternative Energy Coalition?

During the late 1980s, I had the good fortune, thanks to the Rockefeller Foundation, to lead and facilitate an Aspen Global Forum between Russian and U.S. leaders in Sochi; the site of the present Olympics. The subject was economic development in the then already fragmenting, Soviet Union.

Sochi was beautiful but back then was a relatively small resort city for vacationing Russian nomenklatura. I have three memorable funny stories (at least for me) related to Sochi. I will try linking them, for better or worse, with the need for alternative fuels.

Getting to Sochi at the time provided a unique experience. The U.S. delegation which included a former U.S. Senator, several Wall Street titans, the editor of a major national newspaper, leading members of the Denver business community and myself (I was a Dean at the University of Colorado at the time) were told when we arrived at the Moscow airport in a snowstorm, we had to fly out of Moscow’s second smaller airport. We all dutifully were taken by shuttle, very slowly given the snow, to what seemed like an old, a very old facility. We quickly boarded what appeared to be a jet plane on its last legs. It was late at night and the snow was still blowing strong. The plane’s seats were broken and the bathrooms didn’t work. The cabin crew was nice but spoke only in difficult to understand broken English. Not an auspicious start to the trip. Two members of our delegation asked the pilot for 10 minutes to go into the terminal (an exaggeration of the term) to buy two or three bottles of vodka to give us courage and calm our nerves. They did get permission. It turned into a fun flight.

After we checked into the Intourist Hotel in Sochi, we all went to bed. One of the members of our delegation was a smart, tough, but very funny reporter and op-ed writer for the Rocky Mountain News. She came down the next morning and indicated most of her winter clothes were stolen from the room, while she was sleeping. I went up to the Manager of the hotel and told him what had happened. He was dutifully contrite. Every day while we were there, the reporter received a nice gift of new winter clothing to wear in the snow. At the end of the week, I thanked him and said, next time, have them take my clothes!  He laughed. I was serious!

The Russian delegation hosted us in the summer home of an apparently famous Russian oligarch, whose name I forget, about 100 or so miles from Sochi. They took us there in big Army helicopters. We flew over and between the mountains and valleys of the Caucasus. The mountains were covered with much snow and looked gorgeous. One of the Russian guides opened the door so we could get a closer view. A big mistake! A member of the U.S. delegation, a well-known war experienced woman journalist, based I believe at the time in D.C, shouted close the f….n door. “I have covered many wars and been shot at. I survived. I don’t want to go down in a helicopter. We can look at the snow through a window.” She was right. At that point the helicopter seemed tilted at a significant angle to please us. We all were a bit scared but didn’t want to hurt our Russian hosts. She had no such fear. The door was closed.

If anything, except fuzzy memories, ties these stories together, it’s the snow and the mountains and a thought about building a coalition around alternative and renewable fuels to save the beauty of both and to the jobs they provide both up and down stream.

Based on the over 50 degree temperatures in Sochi during the current Olympics and the lack of abundant snow, The New York Times indicated that Daniel Scott, a professor of global change and tourism at the University of Waterloo in Ontario, was stimulated to project the future of winter sports. He noted that with a rise of global temperature possible by 2100 of 7 degrees Fahrenheit, there might not be many snowy regions left to hold the Winter Olympics.  He concluded “that of the 19 cities that have hosted the Winter Olympics, as few as 10 might be cold enough by midcentury to host them again. By 2100 the number will shrink to six.”

Of the 960,000 winter sports industry jobs are supported by winter sports in the U.S. 27,000 have already been lost because of lack of snow, according to a recent NRDC report. More will be gone next season if snow fall totals continue to decline.

If we can easily check the box on one or more of the following: concern for the health of the economy, concern for the environment, concern for the quality of our water supply and the availability of water, concern for the future of the ski industry and winter sports off and on mountains, then even if we don’t ski, and even if greenhouse gas is not a top priority for some , we should be able to foster a strong coalition between environmentalists, business, nonprofits,  natural gas and renewable fuel  advocates. Its mandate would be to work on speeding up use of alternative natural gas based transitional fuels  and helping place electric cars on a faster and cleaner track to market acceptance. The strategy is not perfect by any stretch of the imagination but it will at least get the country started on a path that will reduce harmful environmental impacts of gasoline including significant GHG emissions and other pollutants. It may also help slow down the browning of our mountain areas and the closure of winter resorts and the manufacturing and retail sectors that serve them.

America needs a good dose of pragmatism and probability curves to guide its fuel policies. Advocates of natural gas based fuels and renewables should be able to coalesce around the President’s agenda with respect to weaning the nation off gasoline (one of the biggest carbon emitters) and gasoline only vehicles.

Assuming electric utilities continue to switch from coal to cleaner natural gas; scholars suggest that electric cars will be of help in reducing total carbon emissions. But EV’s are not yet ready for prime time for most low, moderate and middle class households, in light of the relatively low mileage secured on a single battery charge, the absence of retail distributers, the small vehicle size and price. When they are, let the competition begin, remembering all the while that real change in emissions and reduction of pollutants, will come after the conversion of large numbers of existing cars to flex fuel vehicles and their ability to use natural gas based fuels. Back to Sochi and indeed to the mountains throughout America, when we are asked every Christmas whether there is a Santa Claus, lets us be able to look up at magnificent snow-capped mountains and collectively say, yes there is a Santa Claus and then sing loudly, Let it snow, Let it snow, Let it snow.

 

Can Butanol Be the New Ethanol?

Even as the ethanol industry is wobbling over the Environmental Protection Agency’s decision to cut back on the ethanol mandate in 2014, a new candidate has emerged as an additive to gasoline – butanol.

Virgin Airways founder and CEO Richard Branson has announced that his Virgin Green Fund will be cosponsoring a groundbreaking butanol manufacturing plant in Luverne, Minnesota.  “Butanol is the future of renewable fuel,” said Branson, who is already using renewable jet fuel for his airline.  “It’s hugely versatile and can be used to produce gasoline fuel blends, rubbers, solvents, and plastics, which gives us scope to enter a range of markets,” he said in an interview with Bloomberg.

Corn ethanol now dominates the $26 billion gasoline additive market, drawing the glucose content out of 45 percent of the nation’s corn crop (the protein is fed to animals).  Branson’s butanol would use a similar feedstock – corn, sugar cane or cellulosic biomass – but would produce a fuel that has 84 percent of gasoline’s fuel density compared to ethanol’s 66 percent, although ethanol has a higher octane rating.  The implication is that butanol could be mixed at higher blends, giving it almost the same range as gasoline.

Both butanol and ethanol are made through a process that employs yeasts to ferments the glucose from organic material into alcohols.  Methanol, the simplest alcohol, has one carbon joined to a hydroxyl ion while ethanol has two carbons and butanol has four.  Octane, the principal ingredient in gasoline, has eight carbons without the hydroxyl ion.

As far a butanol is concerned, it’s not as if people haven’t tried this before.  Both BP and Royals Dutch Shell have experimented with producing butanol from organic material but have found the process harder than they anticipated.  “There is certainly a potential, but there have been quite considerable problems with the technology,” Clare Wenner, of the London-based Renewable Energy Association, told Bloomberg.  “It’s taking a lot longer than anybody thought years ago.”

Gevo’s plant in Minnesota, for instance, has been running at only two-thirds of its 18 million gallon-a-year capacity because of a contamination in its yeast fermenting facility in September 2012.  Similar instabilities in the microbial-based process have dogged the efforts to break down cellulose into simple molecules.  There operations can often be performed in the laboratory but become much more difficult when moved up to a commercial scale.

Branson is confident these obstacles can be overcome.  He’s already got Silicon Valley investor Vinod Khosla on board in Gevo and Total, the French oil company, has also taken a stake.  Together they have enlisted big ethanol producers such as Big River Resources and Siouxland Ethanol to commit to switching their manufacturing process to butanol.  Butamax Advanced Biofuel, another Minnesota refiner funded by Dupont and BP, is also in the process of retrofitting its ethanol plant to butanol.  Taken together, these facilities would be able replace 1 billion of the 14 billion gallons of ethanol now being produced every year.

Whether this would be enough to make a bigger dent in America’s oil import budget remains to be seen.  The 14 billion gallons of ethanol currently substitutes for 10 percent of our gasoline and about 6 percent of our total oil consumption.  The Environmental Protection Agency has limited ethanol additives to 15 percent of the blend, mainly to protect older cars.  (In Iowa, newer cars are running on an 85 percent blend.)  Now the reduction in the 2014 mandate is making the ethanol industry nervous about overcapacity.  Butanol is less corrosive of engines and the 16 percent blend could give it an edge.

On another front, T. Boone Pickens’ Clean Energy Fuels announced this week that it may turn a profit for the first time since its founding in 1997.  Clean Fuels is concentrating on supplying compressed natural gas for trucks, signing major contracts with Frito-Lay, Proctor & Gamble, United Parcel Service and Ryder.  It is also attempting to set up a series of filling stations on the Interstate Highway System.  The use of CNG requires an entirely new infrastructure, however, rather than the easy substitution of liquid and butanol.

The dark horse here is methanol, which is liquid and fits easily into our present infrastructure but would be synthesized from natural gas.  Somehow, methanol has not attracted the attention of Branson’s biofuels and Pickens’ CNG.     All of these efforts hold promise, however, and would make a huge dent in our annual $350 billion bill for oil imports, which constitutes the bulk of our $450 billion trade deficit.  So good luck to all and may the best fuel win – or all of them, for that matter.

Oil and Natural Gas Prices and the Future of Alternative Fuels

I love Vivaldi’s Four Seasons, especially the music from the spring. I love the optimistic line from the poem by P.B. Shelley, “if winter comes can spring be far behind.”  The unique cold weather, the Midwest, East Coast and even the South, has been facing this year will soon be over and spring will soon be here. Maybe it will be shorter. Perhaps, as many experts indicate, we will experience a longer summer, because of climate change. But flowers will bloom again; lovers will hold hands without gloves outside, kids will play in the park… and natural gas prices will likely come down to more normal levels than currently reflected.

Last Friday’s natural gas price according to the NY Times was $5.20 per thousand cubic feet. It was “the first time gas had crossed the symbolic $5 threshold in three and half years, although (and this is important) the current price is still roughly a third of the gas price before the 2008 financial crisis and the surge in domestic production since then.”

Why? Most experts lay the blame primarily on the weather and secondarily on low reserves, a slowdown in drilling, and pipeline inadequacies. The major impact so far has been on heating and electricity costs for many American households, particularly low and moderate income households and the shift of some power plants from natural gas back to coal.

I wouldn’t bet more than two McDonald’s sandwiches on where natural gas prices will be in the long term. But I would bet the sandwiches and perhaps a good conversation with a respected, hopefully clairvoyant, natural gas economist-one who has a track record of being reasonably accurate concerning gas prices- that come cherry blossom time in Washington, the price of natural gas will begin to fall relatively slowly and that by early summer, it will hover between 3.75 to 4.25 per thousand cubic feet.

Natural gas prices over the next decade, aided by growing consensus concerning reasonable fracking regulations as reflected in Colorado’s recent regulatory proposals, and EPA’s soon to be announced regulations, should be sufficiently high to reignite modest drilling passions, improvements in infrastructure and increased supplies at costs sufficient to maintain an advantage for natural gas based fuels when compared to oil based fuels at the pump.

The present relatively low price of oil (Bent Crude $107 a barrel; WTI $97.00 a barrel) and its derivative gasoline ($3.30 a gallon) may impact the cost differential between gasoline and natural gas based fuels. But the impact could go both ways. That is, if the price of oil per barrel continues to fall and translate into lower costs for gasoline, the price differences between natural gas based fuels and gasoline would narrow. Conversely, if the price of oil goes lower than $90 a barrel, its present price, it likely will impede future drilling, particularly in high cost, hard to get at environmentally sensitive areas. This fact combine with renewed economic growth in the U.S., Europe and Asia, as well as continued tension in the Middle East and continued speculation could well result in a return to higher gasoline prices.

Clearly, the relationship between the cost of natural gas based fuels (CNG, ethanol and methanol) and gasoline is a critical variable in determining consumer behavior with respect to conversion of existing cars to flex fuel cars and the purchase of new natural gas cars (Based on the national pilot involving 22 states lead by Governor Hickenlooper(D) and Governor Fallin(R), as well as interviews with carmakers, creation of a deep predictable market for CNG fueled vehicles will bring down the price of such cars and give them competitive status with gasoline fueled vehicles).

The odds are that the lower costs of natural gas based fuels will serve as an incentive to buyers and existing owners to use them. That is, assuming problems related to fuel distribution as well as access and misinformation concerning the affect alternative fuels have on engines are resolved by public, non-profit, academic and private sectors. Maybe I will up my bet!

Altruism Aside, Is Ethanol A Competitive Alternative Fuel?

I was a bit under the weather this past weekend. I thought it would be a good time to catch up on some reading; something assumedly simple- the relatively recent literature concerning the ability of ethanol, particularly E85, to compete with gasoline and the capacity of consumers to make rational decisions in their choice of alternative fuels.

By Sunday night, apart from watching the Denver Broncos happily beat New England on TV, and the amusing dialogue and extensive media time generated by Seattle’s cornerback, Richard Sherman, concerning his athletic and his academic prowess; I spent about 10 hours reviewing several well cited pieces concerning the price relationship between ethanol and gasoline. I also read the intense, often seemingly less than civil debate in papers authored by two professors at Iowa State (Dermot Hayes and Xiadong Du)  and two at MIT (Christopher Knittel and Aaron Smith) concerning methodology associated with defining the relationship between ethanol and gasoline prices. (The Iowa and MIT faculty vigorously attacked each other, sometimes personally, over mistaken attribution of research funding sources. More important, the Iowa folks generally argued that their data suggested a link between ethanol production and the price of gasoline. They indicated that, as ethanol production increased the price of gasoline decreased relative to the price of crude oil.

The MIT folks poo poo’d their distant colleagues’ findings. They indicated that their empirically based models illustrate only a statistically insignificant set of relationships concerning ethanol, gasoline and crude oil prices. They also opined that the Iowa writers misapplied the crack ratio –the relationship of gasoline to crude oil prices- and did not use or mistakenly used the crack spread ratio (the weighted average of the gasoline and distillate products produced by a barrel of crude oil minus the cost of crude). Put in another way, what the Iowa writers recorded was correlation not causation. (I know the etymology but we need to help the economists among us find a better set of terms than crack spread and crack ratio. For a minute, I thought that the texts described a line up at a police station or FBI statistics about drug use.)

What can we learn from recent literature about the effect of ethanol production and gasoline prices at the pump?

1. Most independent experts, not affiliated with advocacy groups, seem willing to support as fact that increased ethanol use, at times, will lower the price of gasoline or slow the increase in the price of gasoline. But the caveat is “somewhat.” They disagree on how much on either side of zero. The recent conventional wisdom, stimulated by the Iowa study that ethanol has and likely will reduce the wholesale price by $.89 cents to $1.09 per gallon seems wrong. It appears to reflect an overstatement based on analyses and models that do not accommodate the many complex variables affecting price and costs (e.g. costs of refining, rapid changes in the costs of corn, the costs of distribution, the lack of infrastructure, the unanticipated increases or decreases in costs of crude oil based on investor speculation, escalation or de-escalation of tension in Middle East, uncertain federal policy, etc.). If I were a betting person, I would place my bet on Knittel and Smith’s conclusions that, over time, the price impact of ethanol at the pump on gasoline prices is likely marginal at best.

2. However, to be fair, some scholars and practitioners in the energy business believe that if gasoline is blended with a larger proportion of ethanol (e.g. E85), the price of a gallon of fuel could well drop, given the idiosyncrasies of the present market.  If this occurs and the reduction appears to consumers as beneficial, a number of observers think that owners of flex fuel vehicles (new or converted) could be enticed to switch to E85. What they generally don’t know, is the cross over point where alternative fuels like E85 become a viable option to drivers because the prices seem to be a good deal. A smart and astute participant in a recent forum on alternative fuels indicated that “people drive to COSTCO or Wal-Mart to save 5-8 cents a gallon on gasoline. Why wouldn’t they switch to E85 blends, if they reflected similar or indeed larger savings and fuel stations were accessible?”

Maybe they would, maybe they wouldn’t! If the price is low enough, many drivers will likely engage in personal opportunity costing. But what is low enough? Getting gas at Wal-Mart and Costco is different from getting E85. Gas is a familiar product to most drivers. Consumers of E85 will have to surmount doubts over product safety, stimulated, I believe erroneously, by groups such as the AAA. Further, because E85 will get fewer miles per gallon, drivers will probably think about perceived price savings in the context of miles per gallon and extra trips to the fuel station (If they forget to do the personal math, they will be reminded to do so by oil companies).

3. Uncertainty exists concerning how much consumers will pay for ethanol based on personal preferences or commitments to societal well-being, what I call the altruism thing.

As one author put it, “ …the demand for ethanol (E85) as a substitute (E10) is sensitive to relative fuel prices: a  $.10 per gallon increase in ethanol’s price relative to gasoline leads to a 12-16% decrease in quantity of ethanol demanded. Price responses are considerably smaller, however, than they would be if households had identical willingness to pay for ethanol as a gasoline substitute and… results imply that some households are willing to pay a premium for ethanol.”

Why? Maybe to improve the environment, provide support for farmers, to express concern over national security, etc. A recent report from Brazil indicates that some Brazilians are willing to pay more for alternative fuels because of what seem to be altruistic reasons. Before we say hallelujah, I should note that we don’t really know the numbers seeking salvation. They are not your average household but rather as one economist notes they are likely “marginal” households in terms of numbers. Further, several respected survey firms in the U.S. doubt that goals related to the larger community or nation, even if consumers articulate them in their living rooms, will overcome large differences between the price of E85 and gasoline, if they occur.

Similarly, altruism or civic values will not overcome fear of engine damage or the need for relatively long trips to fuel stations to secure alternative fuels. The pews, at least until we know more, probably will remain filled with a proportionately large share of guilty drivers on Saturday or Sunday.

The Fuel Freedom Foundation is involved in three state pilot projects aimed at converting existing cars to flex fuel cars; cars that will permit their owners to use natural gas based fuel such as ethanol and, when it is legal, methanol. Hopefully the pilot projects, combined with strategic federal, state, foundation and private sector supported research, will expand knowledge concerning consumer decisions and variables such as the importance of price differentials, altruism, distance, access, etc.

A study supported by Fuel Freedom Foundation recently completed by the respected independent Resources for the Future optimistically noted that “…we see alternative pathways for bring a lower-cost E85 to the pump. If and when ethanol produced by the newly patented, NG-driven Celanese process becomes available, owners of FFVs could realize substantial cost savings, up to $0.83/gge in 2015. If and when cellulosic ethanol becomes available at projected cost for full-scale productions, owners of FFFs could realize similar cost savings.”

Sleep easy! Good Times are coming for the nation and the consumer.

Can Ethylene Replace Gasoline?

The effort to replace oil-based gasoline in our cars with similar fuels derived from natural gas took a big step forward last week with the announcement that Siluria, a promising start-up, will build a $15-million demonstration plant in Texas

The plant will produce ethylene, the most commonly produced industrial chemical in the world and the feedstock for a whole raft of products in the chemicals and plastics industry. But Siluria, which is not yet a public company, is also planning demonstration plants that will produce gasoline. Initial estimates are that the product could sell at half the price of gasoline derived from oil. If these projections prove to be anywhere close to reality, we could be on a path to a fuel economy that is finally able to cut its dependence on oil.

The idea of producing ethylene from natural gas has been around since the 1980s but achieved little success. Several major oil companies invested millions of dollars in the process but finally gave up on it. Jay Labinger, a Caltech chemist who did much of the initial research, finally wrote a paper in the 1980s warning other researchers that it was a waste of time. He may have given up too soon.

Siluria is a California-based startup that has received much of its funding from Silicon Valley investors who tried to move from computers and the Internet into the energy space over the last decade. So far their success hasn’t been great. In fact Vinod Khosla and other Silicon Valley energy entrepreneurs were the subject of an embarrassing critique on “60 Minutes” only two weeks ago. The Siluria venture, however, may be the gusher that makes up for all the other dry holes.

The 1980s efforts concentrated on heat-activated processes whereby methane is split into carbon and hydrogen and then recombined into the more complex ethylene, which has two double-bonded carbons and four hydrogens. All these efforts proved far too energy-intensive, however, and never became economical.

Siluria has been trying a different approach, seeking catalysts that would facilitate the process at much lower energy levels. Moreover, the company has spurned the more recent approach of trying to design molecules that fit the chemicals just right and gone back to the old shotgun approach where thousands of candidates are tried on a catch-as-catch-can basis.

Defying all expectations, the process seems to have worked. Siluria has come up with a catalyst that it says promotes the breakdown and subsequent reassembly of methane at very low energy levels. It has built pilot plants in San Francisco, Menlo Park and Hayward, California and last week announced plans for building a full-scale demonstration plant in La Porte, Texas in conjunction with Braskem, the largest petrochemical manufacturer in South America. If that isn’t proof that Siluria is on to something, what is

The implications of this development are enormous. Natural gas is two to six times more abundant than oil in the world and is now selling at 1/5th the price for an equivalent amount of energy. The traditional tandem pricing of oil and natural gas prices has now been broken and gas is functioning as a completely different commodity, much cheaper.

The difficulty all along has been that natural gas is hard to put into your gas tank. So far efforts have involved compressing natural gas, which means storing it at 3600 pounds per square inch, or liquefying it, which requires temperatures to be lowered to – 260 degrees F. Neither is very practical and would require a whole new auto engine and delivery infrastructure.

Efforts to convert gas into a liquid have concentrated around methanol, which is the simplest alcohol and has been used to power the Indianapolis 500 racing cars since the 1960s. But methanol is the deadly “wood alcohol” of the Prohibition Era and raises fears about poisoning – although gasoline is poisonous, too. The Environmental Protection Agency has never certified methanol for use in auto engines, although an M85 standard has been permitted in California.

Synthesizing gasoline through Siluria’s ethylene-based pathway could solve all these problems. Ed Dineen, CEO of Siluria, says that the gasoline product could sell at half the price of today’s gasoline. With more natural gas being found all the time – and with $1 billion being flared off uselessly around the world each year – any success in turning natural gas into a readily accessible automobile fuel could have a revolutionary impact on our entire economy.

There’s Gold in Them Thar’ Flares

Walter Breidenstein may be the only CEO in America who still answers the company phone himself. If his operation is still something of a shoestring, it’s because he’s spent four years trying to duel with perhaps the most formidable foe in the country, the oil companies.

“I’ve been trying to get into North Dakota for four years to show them there’s a way to make money by stopping flaring,” says the 48-year-old who started his entrepreneurial career at 15 by washing dishes. “The oil companies have done everything they can to keep me out of the state and the bureaucracy has pretty much goes along with them. The companies know that as soon as they acknowledge we’ve got a workable system here, they’d have to buy one of our rigs for every well in the state.”

North Dakota, in case you haven’t heard, has become one of the biggest wasters of natural gas in the world by flaring off $1 billion worth a year while producing carbon emissions equal to 1million automobiles.  But oil is what the drillers are after and, as it was in the early days of the oil industry; gas is regarded pretty much as a nuisance. The result is gas flares that make the whole state look like neighboring Minneapolis from outer space.

The flaring has generated a lot of negative publicity, environmentalists are up in arms and landowners have sued over lost royalties. The big guys are starting to move into the state. The New York Times ran an article this week about new pipeline construction, fertilizer factories and GE’s “CNG in a Box,” which will capture flared gas and sell it asnatural gas.

Breidenstein has a different idea.  “Somewhere around 2000 I started reading about methanol technology and realized it was a very undervalued resource,” he says. “Then I read George Olah’s The Methanol Economy in 2006 and that convinced me.  At Gas Technologies we’ve been trying to put Olah’s vision into practice.”

Gas Technologies has developed a $1.5 million portable unit that captures flared gas and converts it to methanol. “It’s a very accessible device,” says Breidenstein.  “You can move it around on a flatbed truck.”  The company ran a successful demonstration of a smaller unit at a Michigan oil well last fall but still hasn’t been able to break into North Dakota.

“The oil companies’ attitude is that money is no problem as long as they don’t have to spend it,” says Breidenstein.  “I’ve been in the business 25 years and I know where they’re coming from. But the problem is no one is forcing them to deal with flaring. And as long as they can keep throwing that stuff into the atmosphere for free, nobody’s going to look for a solution.”

You’d think with a billion dollars worth of natural gas being burning off into the atmosphere each year, though, there’d be some say to make money off it and that’s what frustrates Breidenstein.

“Our rig costs between $1 and $2 million dollars,” he says.  “But by capturing all the products of flared gas, you can make around $3500 per day.  That puts your payback at around three to four years.  But the oil companies don’t think that way. They won’t look at anything that goes out more than six months.

That puts things in the hands of state regulators and so far they have sided with the oil companies. “By statute, the oil companies are allowed to flare for a year it there’s no solution that’s economical,” says Alison Ritter, public information officer for the North Dakota Department of Mineral Resources.  “There’s nothing we can do to require them to buy from one of these boutique firms. Many oil companies have already committed their gas to pipeline companies and they can’t back out of those contracts.”  Still, the pipelines may not be built for years. “You have to understand, the Bakken Oil Field is 15,000 square miles, the size of West Virginia,” adds Ritter.  “It’s hard to service it all with infrastructure. We’re building pipelines as fast as we can.” Of 40 applications for flaring exemptions submitted this year the state has approved two and denied one, with the other 37 pending.  While they are pending, flaring goes on.

Of course if Gas Technologies were to start receiving orders right now, they’d be hard pressed to produce a half-dozen of them let alone the 500 that the state might require. “We’ve had talks with venture capitalists but if you’re not from Silicon Valley, they’re not interested,” says Breidenstein.  “But we’ve got a business model here and we know it can work.”

At least someone has taken notice. This year Crain’s Detroit Business rated Gas Technologies Number One in the state for innovative technology, ahead of 99 other contenders, including General Motors, Ford, Volkswagen, Whirlpool, Dow Chemical and the University of Michigan.  “Because the Walloon Lake company’s patents are potential game-changers, its patents rank high on the value meter with a score of 156.57 (anything over 100 is considered good),” said the editors.

It may not be long before others start noticing as well.

The Principal Impediment to Alternative Fuels Is – Government Regulation?

In their path-breaking study, “Fuel Choice for American Prosperity,” the Energy Security Council carefully outlines the dilemma that our complete dependence on oil for transportation has created.

“It’s not the oil we import, it’s the price,” was the way they summarized it. As I outlined in a previous post the authors show how OPEC still controls the bulk of the world’s oil reserves and has not increased its output since the 1970s. As a result, even though we have increased domestic production dramatically and cut down on consumption, we are actually paying more for our oil imports than we were ten years ago. Why?  Because, OPEC is still able to manipulate the price to keep it at $100 a barrel. It’s not the black stuff we import that crimps our economy, it’s the price of oil we must accept from a monopolistic cartel.

So what to do?  Do we set up protests outside OPEC’s corporate offices in Vienna?  Do we bring an anti-trust suit in some world forum? People have actually tried such things and gotten nowhere. No, the only way to extricate ourselves from this market is to break the monopoly that oil has on our transportation system. If oil had competitors, it will start acting like any other commodity and respond to supply and demand. The key to breaking the OPEC monopoly, says USESC, is to develop alternative fuels.

When it comes to asking why we have not made more progress in developing alternative fuels, however, USESC has a surprising answer: government regulation. Government regulation? How can that be? I thought the government was doing everything it could to foster alternatives and try to lower our oil imports. Well, as usually happens when the government gets involved in manipulating a market, things quickly get complicated and murky. Here’s what has happened:

CAFE standards. When Congress first started setting corporate fleet average standards, responsibility was given to the Environmental Protection Agency. In retrospect, this was an odd choice, since EPA is more concerned with air pollution than reducing oil consumption. The Department of Energy would have been a more logical choice. This didn’t become visible in the 1980s when pollution concerns centered on the combustion products of sulfur and nitrogen. But now that carbon dioxide and global warming have become the principal concerns, the EPA has subtly changed its emphasis. As USESC points out; “CAFE’s initial energy security centric vision has been blurred by the desire to use the law to promote greenhouse gas emission reduction goals.”

In its latest regulatory effort, for example, the EPA will reward auto companies for introducing alternative fuels by applying a “multiplier” to their corporate fleet average beginning in 2017. Every electric and hydrogen fuel cell vehicles will count as two vehicles in the denominator of the corporate average, phasing down to 1.5 by 2021. For plug-in hybrid electric vehicles (PHEVs) and compressed natural gas vehicles (CNG), the multiplier will be 1.6, phasing down to 1.3.

All this seems fair enough. EVs and FCVs use no gasoline and plug-in hybrids are only partially dependent on oil. The real problem, however, is that flexible-fuel vehicles – cars that are designed to burn ethanol, methanol or gasoline – have only been given credit based on how much E-85 they burn in real-world driving. The auto manufacturers have used this to avoid making improvements in car efficiency. This is regrettable because flexible fuel engines burning either ethanol from homegrown corn or methanol derived from natural gas would be the best say to cut down on imported oil. Both methanol and ethanol are liquids and fit right into our current gas station delivery system. Compressed natural gas and electricity, on the other hand, require a whole new replenishing system. Yet the EPA remains wary of both ethanol and methanol because they produce carbon exhausts. CNG also produces carbon exhausts, of course, and EVs drawing power from coal or natural gas will produce exhausts at the power plant. The EPA has tried to compensate for this by adding upstream carbon releases for EVs and other alternative fuels but it does not do the same for gasoline!  In short, the whole multiplier system is a mess. The EPA would do much better just trying to reduce oil dependence rather than bringing carbon emissions into the equation.

Costs of converting to alternative fuels: One of the most important steps in developing alternative fuels is converting existing gasoline vehicles to run on other fuels.

In general, there are three types of conversions – switching a gasoline or diesel car to run solely on another fuel (dedicated), changing a vehicles to run on higher alcohol blends (flex fuel), or installing an additional fuel tank so that the vehicles can burn the competing fuel as well (bi-fuel). In American, however, onerous regulations and staggering costs of conversion has deterred consumers.

The study points out that installing a CNG tank in an American car costs $10,000 while the same tank in Europe can be installed for $3,800. The difference is the strength of the tank as dictated by the EPA. Of course we don’t want to be in a situation such as Pakistan where CNG cars are exploding due to poor tank quality.  But even in comparison to other developed countries, U.S. regulatory requirements are excessive. 

Taxing by volume instead of by energy content: The federal and state governments places taxes on gasoline and any other product used to propel trucks and automobiles. The logic here is that the money goes into special highway trusts that maintain the roads. But the tax is imposed by the gallon rather than by energy content. USESC maintains that this is discriminatory because methanol, ethanol and other non-gasoline products have less energy density and therefore require more volume for the same amount of energy. This is a fine point and might be disputed by the oil industry, which would say if ethanol and methanol have less energy content, that is simply their tough luck. Ethanol, on the other hand, has been exempted from the federal highway tax and most state gas taxes, which is what makes it economical to add to gasoline.

The ban on methanol: Finally, although the USESC report does not even mention it, the biggest regulatory impediment to alternative fuels is the EPA’s failure to authorize the use of methanol in gas tanks. Putting anything in your gas tank requires permission from the EPA because of air pollution considerations. Although methanol actually produces less nitrous oxides and less particulate matter than gasoline, the EPA has never given it an OK. Although methanol made from natural gas might be the best alternative for replacing gasoline, it is does not yet have EPA approval.

Changing any and all of these regulations would require a huge concerted effort by some constituency that had a strong material interest in pushing it through Congress. Unfortunately, there is no such group. The natural gas industry is not yet organized around the issue and is more concerned about defending fracking and opening up natural gas exports. T. Boone Pickens is pushing CNG for trucks through his Clean Energy Fuels but there is no similar effort to promote the use of natural gas in cars. The entire farm bloc is behind corn ethanol, of course, which is why it has been so successful. But there is no similar interest promoting methanol, which may be just as good an alternative or better.

Under these circumstances, the best alternative is to persuade the auto manufacturers to produce flex-fuel vehicles that can run on any fuel – natural gas, hydrogen, biodiesel, E85 (85% ethanol) or M85 (85% methanol). The adjustment would not add significantly to the price of a new car and would open up the field to all the competitors attempting to replace gasoline.

Let the best fuel win.

Ford Leads the Way

The Ford Motor Company stepped front-and-center in the effort to fine alternatives to high-priced imported oil last week with the announcement that it will offer compressed natural gas (CNG) tank as an option in the F-150 pickup truck, its most popular brand that currently sells 700,000 models a year.

Now it won’t come cheap. There’s a $250-$350 charge for the vehicle to come “prepped” from the factory. That means putting hardened valves, valve seats, piston and rings into the V6 engine. But after that, there’s a $7-9000 charge for installing the CNG tank in the cargo bay – made considerably more expensive than in Europe because safety standards are interpreted in a way that makes them much more expensive. This lifts the showroom price from $24,000 to around $32,000. That’s a big chunk but Ford swears you’ll make it back in three years by substituting fuels.

With the price of gas at around $3.80 per gallon and the oil-equivalent of natural gas at around $1.20, those savings should add up fast.  Of course all this assumes that the price differential won’t narrow to its traditional level, but that doesn’t seem very likely now. Electrical plants have shown a tendency to move quickly back to cheaper coal if the price of gas rises, but the difference between the crack spread and the spark spread seems to have separated permanently, much to natural gas’s advantage.

All this is good news for those looking to substitute some of our abundant natural gas for foreign oil in our transport sector.  In fact, there’s a lot of progress being made right now:

Clean Energy Fuels of Newport Beach, CA already has a network of 360 natural gas fueling stations at truck stops along Interstate highways and is trying to build a complete national infrastructure.  NGV stations cost $750,000 a pop but Clean Energy is looking at the long term.  The ready availability of filling stations will help spur the conversion of giant 18-wheel diesel haulers, which most people see as the ripest target for conversion.

Heavy-duty fleet vehicles are making rapid progress.  Buses and garbage trucks are in the forefront. Eight out of ten new vehicles bought in 2012 by Waste Management, the leader in the field, were powered by natural gas.

There are now 120,000 gas vehicles on the road in the United States, according to Natural Gas Vehicles of America, the trade group.  Unfortunately, this constitutes only a tiny fraction of the 15.2 million NGVs worldwide. Iran, Pakistan and Argentina, improbably, are the leaders. We’re behind in making the transition, but there’s plenty of room to catch up.

In a report issued in June, Citi Research estimated that one-quarter of the world’s present consumption of oil could be replaced by natural gas under present conditions. More than 9 million barrels per day could be replaced in truck transport, 2 million of these in the US. Another 3 million b/d could be opted out in marine transport and 200,000 b/d in railroad locomotives.

All this would be fairly easy to transact since it involves large commercial organizations with centralized decision-making.  Sooner or later, however, this approach is likely to run up against limits.  The stumbling block will be the vastly more decentralized system of private automobiles, which still consumes 60 percent of our oil and involves a car in every garage and a gas station on every other corner. Here the problem of building an infrastructure and achieving widespread distribution is much more difficult.

The problem comes because reformers are viewing natural gas as a fuel instead of a feedstock. Compressed natural gas (CNG) and liquefied natural gas (LNG) are the most readily available options – and both are legal – but in the end they are going to have their limits. It will make much more sense to use methane as a feedstock for the manufacture of liquids, methanol in particular.  These will be much easier to transport and will substitute for gasoline in current car engines with only minimum adjustment – nothing like the $8000 required for the F-150. Valero has just opted to build a $700 million methanol manufacturing plant in St. Charles, Louisiana in anticipation of this demand. All depends on whether the Environmental Protection Agency decides to give a go-ahead to use methanol in car engines. The matter is pending.

So the effort to use our abundant natural gas resources to reduce our dependence on expensive, unpredictable and unreliable foreign sources of oil is making headway. Ford’s decision to equip the F-150 with CNG is a beginning. But there’s more to come.