Non-food-based ethanol scaling up to succeed corn
Biofuels have been taking their lumps lately. After almost seven years of controversy, the European Parliament has acted to limit the amount of biofuels that can be garnered from land that could be used to grow food.
The EU has set itself a goal of getting 10 percent of its transport fuel from biofuels by 2020. Last week the Parliament voted to reduce this to 7 percent. The concern is that biofuels are taking food out of people’s mouths. Biofuels are also accused of leading to deforestation, both in Europe and in countries such as Brazil and Argentina, where Amazon rainforest and Argentinian pampas are being put under cultivation for growing biofuels for export.
“Let no one be in doubt, the biofuels bubble has burst,” Robbie Blake of Friends of the Earth Europe said in a statement. “These fuels do more harm than good for people, the environment and the climate. The EU’s long-awaited move to put the brakes on biofuels is a clear signal to the rest of the world that this is a false solution to the climate crisis. This must spark the end of burning food for fuel.”
Ironically, it was soft-energy guru Amory Lovins, who at the time was British representative of Friends of the Earth, who originally suggested the biofuels idea in his 1976 book, Soft Energy Paths. Lovins used an elaborate comparison with the beer and wine industry to show that it would be possible to produce a good one-third of the United States’ gasoline requirements through biofuels. Unfortunately, Lovins did not take account of the amount of land that would be required to grow these crops. This oversight has dogged the biofuels effort ever since.
In the U.S., criticism is mounting as well. A study published last month by researchers at the University of Wisconsin-Madison shows that corn and soy crops for biofuels are expanding into previously un-farmed prairie land in the Midwest. Using high-resolution satellite photographs, the authors identified the expansion of cropland from 2008 to 2012, the four years following the passage of the Renewable Fuels Act that mandated the use of biofuels. The authors estimate that 40 percent of the corn crop grown in the U.S. is now used to make ethanol for use in vehicles. Ironically, environmentalists who originally celebrated ethanol are among its biggest detractors.
So does this mean that American biofuels will soon be facing the same limitations they’ve encountered in Europe? Probably not. The reason, once again, is technology.
From the beginning, the dream of biofuels enthusiasts has been that ways could be found for breaking down the refractory cellulose molecule and turning it into basic sugars that can be synthesized into ethanol. This is a very difficult task. It can only be accomplished in two ways: 1) heating corn stover and other cellulosic materials to a very high temperature, which consumes more energy than is produced; and 2) taking advantage of bacteria in the guts of cows and termites that can break down cellulose. These bacteria are highly temperamental, however, and have proved to be extremely difficult to cultivate on a commercial scale.
Nevertheless, progress has been made, and there are several commercial operations now approaching successful operations. Among them are:
• Abengoa Bioenergy (Hugoton, Kansas). This Spanish company’s cellulosic-ethanol facility came online in 2014 and is expected to produce 25 million gallons per year from corn stover, wheat straw, milo stubble and switchgrass.
• DuPont (Nevada, Iowa). Its 30 million-gallon-per-year cellulosic plant is scheduled to begin production this year. The plant will get corn stover from 500 farmers who are participating in the company’s Feedstock Harvest Program.
• Poet-DSM Advanced Biofuels (Emmetsburg, Iowa). Co-funded by a Dutch company, Project Liberty opened in September 2014 and is producing ethanol from corn cobs, leaves, husk and stalk. It is shooting for 25 MMGY.
• Quad County Corn Processors (Galva, Iowa) started production last year. Its Quad County facility can produce 2MMGY. The company says its patented technology has the ability to generate 1 billion gallons per year, without consuming any more corn, by adding bolt-on technology to existing corn-ethanol refineries.
So ethanol is not standing still. The EPA is expected to issue its renewable fuel standard sometime next month, after dodging the issue for two years. The threshold likely will be below the 14 billion gallons that was originally scheduled for 2014. But the law’s requirement for Gen-2 biofuels has barely been scratched, since these cellulose efforts have not borne fruit to date. With cellulosic operations now gearing up, it appears that ethanol may be ready to take on a second life.
(Photo: Corn-stover harvest. Posted to Flickr by Idaho National Laboratory)